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Preface

Historically, much of theoretical neuroscience research concerned neuronal circuits and
synaptic organization. The neurons were divided into excitatory and inhibitory types,
but their electrophysiological properties were largely neglected or taken to be identical
to those of Hodgkin-Huxley’s squid axon. The present awareness of the importance of
the electrophysiology of individual neurons is best summarized by David McCormick
in the fifth edition of Gordon Shepherd’s book The Synaptic Organization of the Brain:

Information-processing depends not only on the anatomical substrates of synap-
tic circuits but also on the electrophysiological properties of neurons... Even if
two neurons in different regions of the nervous system possess identical morpho-
logical features, they may respond to the same synaptic input in very different
manners because of each cell’s intrinsic properties.

McCormick (2004)

Much of present neuroscience research concerns voltage- and second-messenger-
gated currents in individual cells, with the goal of understanding the cell’s intrinsic
neurocomputational properties. It is widely accepted that knowing the currents suffices
to determine what the cell is doing and why it is doing it. This, however, contradicts a
half-century–old observation that cells having similar currents can nevertheless exhibit
quite different dynamics. Indeed, studying isolated axons having presumably similar
electrophysiology (all are from the crustacean Carcinus maenas), Hodgkin (1948) in-
jected a DC-current of varying amplitude, and discovered that some preparations could
exhibit repetitive spiking with arbitrarily low frequencies, while the others discharged
in a narrow frequency band. This observation was largely ignored by the neuroscience
community until the seminal paper by Rinzel and Ermentrout (1989), who showed that
the difference in behavior is due to different bifurcation mechanisms of excitability.

Let us treat the amplitude of the injected current in Hodgkin’s experiments as a
bifurcation parameter: When the amplitude is small, the cell is quiescent; when the
amplitude is large, the cell fires repetitive spikes. When we change the amplitude of the
injected current, the cell undergoes a transition from quiescence to repetitive spiking.
From the dynamical systems point of view, the transition corresponds to a bifurcation
from equilibrium to a limit cycle attractor. The type of bifurcation determines the most
fundamental computational properties of neurons, such as the class of excitability, the
existence or nonexistence of threshold, all-or-none spikes, subthreshold oscillations,
the ability to generate postinhibitory rebound spikes, bistability of resting and spiking
states, whether the neuron is an integrator or a resonator, and so on.

This book is devoted to a systematic study of the relationship between electrophysi-
ology, bifurcations, and computational properties of neurons. The reader will learn why
cells having nearly identical currents may undergo distinct bifurcations, and hence they
will have fundamentally different neurocomputational properties. (Conversely, cells

xv
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having quite different currents may undergo identical bifurcations, and hence they will
have similar neurocomputational properties.) The major message of the book can be
summarized as follows (compare with the McCormick statement above):

Information-processing depends not only on the electrophysiological properties
of neurons but also on their dynamical properties. Even if two neurons in the
same region of the nervous system possess similar electrophysiological features,
they may respond to the same synaptic input in very different manners because
of each cell’s bifurcation dynamics.

Nonlinear dynamical system theory is a core of computational neuroscience research,
but it is not a standard part of the graduate neuroscience curriculum. Neither is it
taught in most math/physics departments in a form suitable for a general biological
audience. As a result, many neuroscientists fail to grasp such fundamental concepts as
equilibrium, stability, limit cycle attractor, and bifurcations, even though neuroscien-
tists constantly encounter these nonlinear phenomena.

This book introduces dynamical systems starting with simple one- and two-dimen-
sional spiking models and continuing all the way to bursting systems. Each chapter
is organized from simple to complex, so everybody can start reading the book; only
the reader’s background will determine where he or she stops. The book emphasizes
the geometrical approach, so there are few equations but a lot of figures. Half of them
are simulations of various neural models, so there are hundreds of possible exercises
such as “Use MATLAB (GENESIS, NEURON, XPPAUT, etc.) and parameters in the
caption of figure X to simulate the figure.” Additional problems are provided at the
end of each chapter; the reader is encouraged to solve at least some of them and to
look at the solutions of the others at the end of the book. Problems marked [M.S.] or
[Ph.D.] are suggested thesis topics.

Acknowledgments. I thank the scientists who reviewed the first draft of the
book: Pablo Achard, Jose M. Amigo, Vlatko Becanovic, Brent Doiron, George Bard
Ermentrout, Richard FitzHugh, David Golomb, Andrei Iacob, Paul Kulchenko, Maciej
Lazarewicz, Georgi Medvedev, John Rinzel, Anil K. Seth, Gautam C Sethia, Arthur
Sherman, Klaus M. Stiefel, and Takashi Tateno. I also thank the anonymous refer-
ees who peer-reviewed the book and made quite a few valuable suggestions instead
of just rejecting it. Special thanks go to Niraj S. Desai, who made most of the in
vitro recordings used in the book (the data are available on the author’s Web page
www.izhikevich.com), and to Bruno van Swinderen, who drew the cartoons. I en-
joyed the hospitality of The Neurosciences Institute – a monastery of interdisciplinary
science – and I benefited greatly from the expertise and support of its fellows.

Finally, I thank my wife, Tatyana, and my wonderful daughters, Elizabeth and
Kate, for their support and patience during the five-year gestation of this book.

Eugene M. Izhikevich www.izhikevich.com

San Diego, California December 19, 2005



Chapter 1

Introduction

This chapter highlights some of the most important concepts developed in the book.
First, we discuss several common misconceptions regarding the spike generation mech-
anism of neurons. Our goal is to motivate the reader to think of a neuron not only
in terms of ions and channels, as many biologists do, and not only in terms of an in-
put/output relationship, as many theoreticians do, but also as a nonlinear dynamical
system that looks at the input through the prism of its own intrinsic dynamics. We
ask such questions as “What makes a neuron fire?” or “Where is the threshold?”, and
then outline the answers, using the geometrical theory of dynamical systems.

From a dynamical systems point of view, neurons are excitable because they are
near a transition, called bifurcation, from resting to sustained spiking activity. While
there is a huge number of possible ionic mechanisms of excitability and spike genera-
tion, there are only four bifurcation mechanisms that can result in such a transition.
Considering the geometry of phase portraits at these bifurcations, we can understand
many computational properties of neurons, such as the nature of threshold and all-or-
none spiking, the coexistence of resting and spiking states, the origin of spike latencies,
postinhibitory spikes, and the mechanism of integration and resonance. Moreover, we
can understand how these properties are interrelated, why some are equivalent, and
why some are mutually exclusive.

1.1 Neurons

If somebody were to put a gun to the head of the author of this book and ask him to
name the single most important concept in brain science, he would say it is the concept
of a neuron. There are only 1011 or so neurons in the human brain, much fewer than
the number of non-neural cells such as glia. Yet neurons are unique in the sense that
only they can transmit electrical signals over long distances. From the neuronal level
we can go down to cell biophysics and to the molecular biology of gene regulation.
From the neuronal level we can go up to neuronal circuits, to cortical structures, to
the whole brain, and finally to the behavior of the organism. So let us see how much
we understand of what is going on at the level of individual neurons.

1
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Figure 1.1: Two interconnected cortical pyramidal neurons (hand drawing) and in vitro
recorded spike.

1.1.1 What Is a Spike?

A typical neuron receives inputs from more than 10, 000 other neurons through the con-
tacts on its dendritic tree called synapses; see Fig.1.1. The inputs produce electrical
transmembrane currents that change the membrane potential of the neuron. Synaptic
currents produce changes, called postsynaptic potentials (PSPs). Small currents pro-
duce small PSPs; larger currents produce significant PSPs that can be amplified by the
voltage-sensitive channels embedded in the neuronal membrane and lead to the gen-
eration of an action potential or spike – an abrupt and transient change of membrane
voltage that propagates to other neurons via a long protrusion called an axon.

Such spikes are the main means of communication between neurons. In general,
neurons do not fire on their own; they fire as a result of incoming spikes from other
neurons. One of the most fundamental questions of neuroscience is What, exactly,
makes neurons fire? What is it in the incoming pulses that elicits a response in one
neuron but not in another? Why can two neurons have different responses to exactly
the same input and identical responses to completely different inputs? To answer these
questions, we need to understand the dynamics of spike generation mechanisms of
neurons.

Most introductory neuroscience books describe neurons as integrators with a thresh-
old: neurons sum incoming PSPs and “compare” the integrated PSP with a certain
voltage value, called the firing threshold. If it is below the threshold, the neuron re-
mains quiescent; when it is above the threshold, the neuron fires an all-or-none spike,
as in Fig.1.3, and resets its membrane potential. To add theoretical plausibility to this
argument, the books refer to the Hodgkin-Huxley model of spike generation in squid
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Figure 1.2: What makes a neuron fire?

giant axons, which we study in chapter 2. The irony is that the Hodgkin-Huxley model
does not have a well-defined threshold; it does not fire all-or-none spikes; and it is not
an integrator, but a resonator (i.e., it prefers inputs having certain frequencies that
resonate with the frequency of subthreshold oscillations of the neuron). We consider
these and other properties in detail in this book.

1.1.2 Where Is the Threshold?

Much effort has been spent trying to experimentally determine the firing thresholds
of neurons. Here, we challenge the classical view of a threshold. Let us consider two
typical experiments, depicted in Fig.1.4, that are designed to measure the threshold.
in Fig.1.4a, we shock a cortical neuron (i.e., we inject brief but strong pulses of current
of various amplitudes to depolarize the membrane potential to various values). Is there
a clear-cut voltage value, as in Fig.1.3, above which the neuron fires but below which
no spikes occur? If you find one, let the author know! In Fig.1.4b we inject long but
weak pulses of current of various amplitudes, which results in slow depolarization and
a spike. The firing threshold, if it exists, must be somewhere in the shaded region, but
where? Where does the slow depolarization end and the spike start? Is it meaningful
to talk about firing thresholds at all?

resting

threshold

all-or-none
spikes

no spike
Figure 1.3: The concept of a firing threshold.
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Figure 1.4: Where is the firing threshold? Shown are in vitro recordings of two layer 5
rat pyramidal neurons. Notice the differences of voltage and time scales.
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Figure 1.5: Where is the rheobase (i.e., the minimal current that fires the cell)? (a)
in vitro recordings of the pyramidal neuron of layer 2/3 of a rat’s visual cortex show
increasing latencies as the amplitude of the injected current decreases. (b) Simulation
of the INa,p+IK –model (pronounced: persistent sodium plus potassium model) shows
spikes of graded amplitude.

Perhaps, we should measure current thresholds instead of voltage thresholds. The
current threshold (i.e., the minimal amplitude of injected current of infinite duration
needed to fire a neuron) is called the rheobase. In Fig.1.5 we decrease the amplitudes
of injected pulses of current to find the minimal one that still elicits a spike or the
maximal one that does not. In Fig.1.5a, progressively weaker pulses result in longer
latencies to the first spike. Eventually the neuron does not fire because the latency is
longer than the duration of the pulse, which is 1 second in the figure. Did we really
measure the neuronal rheobase? What if we waited a bit longer? How long is long
enough? In Fig.1.5b the latencies do not grow, but the spike amplitudes decrease until
the spikes do not look like spikes at all. To determine the current threshold, we need
to draw the line and separate spike responses from “subthreshold” ones. How can we
do that if the spikes are not all-or-none? Is the response denoted by the dashed line a
spike?

Risking adding more confusion to the notion of a threshold, consider the follow-
ing. If excitatory inputs depolarize the membrane potential (i.e., bring it closer to
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Figure 1.6: In vitro recording of rebound spikes
of a rat’s brainstem mesV neuron in response to a
brief hyperpolarizing pulse of current.
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Figure 1.7: Resonant response of the mesencephalic V neuron of a rat’s brainstem to
pulses of injected current having a 10 ms period (in vitro).

the “firing threshold”), and inhibitory inputs hyperpolarize the potential and move it
away from the threshold, then how can the neuron in Fig.1.6 fire in response to the
inhibitory input? This phenomenon, also observed in the Hodgkin-Huxley model, is
called anodal break excitation, rebound spike, or postinhibitory spike. Many biolo-
gists say that rebound responses are due to the activation and inactivation of certain
slow currents, which bring the membrane potential over the threshold or, equivalently,
lower the threshold upon release from the hyperpolarization – a phenomenon called a
low-threshold spike in thalamocortical neurons. The problem with this explanation is
that neither the Hodgkin-Huxley model nor the neuron in Fig.1.6 has these currents,
and even if they did, the hyperpolarization is too short and too weak to affect the
currents.

Another interesting phenomenon is depicted in Fig.1.7. The neuron is stimulated
with brief pulses of current mimicking an incoming burst of three spikes. When the
stimulation frequency is high (5 ms period), presumably reflecting a strong input,
the neuron does not fire at all. However, stimulation with a lower frequency (10
ms period) that resonates with the frequency of subthreshold oscillation of the neuron
evokes a spike response, regardless of whether the stimulation is excitatory or inhibitory.
Stimulation with even lower frequency (15 ms period) cannot elicit spike response again.
Thus, the neuron is sensitive only to the inputs having resonant frequency. The same
pulses applied to a cortical pyramidal neuron evoke a response only in the first case
(small period), but not in the other cases.
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1.1.3 Why Are Neurons Different, and Why Do We Care?

Why would two neurons respond completely differently to the same input? A biologist
would say that the response of a neuron depends on many factors, such as the type
of voltage- and Ca2+-gated channels expressed by the neuron, the morphology of its
dendritic tree, the location of the input, and other factors. These factors are indeed
important, but they do not determine the neuronal response per se. Rather they
determine the rules that govern dynamics of the neuron. Different conductances and
currents can result in the same rules, and hence in the same responses; conversely,
similar currents can result in different rules and in different responses. The currents
define what kind of dynamical system the neuron is.

We study ionic transmembrane currents in chapter 2. In subsequent chapters we
investigate how the types of currents determine neuronal dynamics. We divide all cur-
rents into two major classes: amplifying and resonant, with the persistent Na+ current
INa,p and the persistent K+ current IK being the typical examples of the former and
the latter, respectively. Since there are tens of known currents, purely combinatorial
argument implies that there are millions of different electrophysiological mechanisms
of spike generation. We will show later that any such mechanism must have at least
one amplifying and one resonant current. Some mechanisms, called minimal in this
book, have one resonant and one amplifying current. They provide an invaluable tool
in classifying and understanding the electrophysiology of spike generation.

Many illustrations in this book are based on simulations of the reduced INa,p + IK-
model (pronounced persistent sodium plus potassium model), which consists of a fast
persistent Na+ (amplifying) current and a slower persistent K+ (resonant) current. It
is equivalent to the famous and widely used Morris-Lecar ICa+IK-model (Morris and
Lecar 1981). We show that the model exhibits quite different dynamics, depending on
the values of the parameters, e.g., the half-activation voltage of the K+ current: in one
case, it can fire in a narrow frequency range, it can exhibit coexistence of resting and
spiking states, and it has damped subthreshold oscillations of membrane potential. In
another case, it can fire in a wide frequency range and show no coexistence of resting
and spiking and no subthreshold oscillations. Thus, seemingly inessential differences
in parameter values could result in drastically distinct behaviors.

1.1.4 Building Models

To build a good model of a neuron, electrophysiologists apply different pharmacologi-
cal blockers to tease out the currents that the neuron has. Then they apply different
stimulation protocols to measure the kinetic parameters of the currents, such as the
Boltzmann activation function, time constants, and maximal conductances. We con-
sider all these functions in chapter 2. Next, they create a Hodgkin-Huxley-type model
and simulate it using the NEURON, GENESIS, or XPP environment or MATLAB (the
first two are invaluable tools for simulating realistic dendritic structures).

The problem is that the parameters are measured in different neurons and then put
together into a single model. As an illustration, consider two neurons having the same
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Figure 1.8: Neurons are dynamical systems.

currents, say INa,p and IK, and exhibiting excitable behavior; that is, both neurons are
quiescent but can fire a spike in response to a stimulation. Suppose the second neuron
has stronger INa,p, which is balanced by stronger IK. If we measure Na+ conductance
using the first neuron and K+ conductance using the second neuron, the resulting
INa,p + IK-model will have an excess of K+ current and probably will not be able to fire
spikes at all. Conversely, if we measure Na+ and K+ conductances using the second
neuron and then the first neuron, respectively, the model would have too much Na+

current and probably would exhibit sustained pacemaking activity. In any case, the
model fails to reproduce the excitable behavior of the neurons whose parameters we
measured.

Some of the parameters cannot be measured at all, so many arbitrary choices are
made via a process called “fine-tuning”. Navigating in the dark, possibly with the help
of some biological intuition, the researcher modifies parameters, compares simulations
with experiment, and repeats this trial-and-error procedure until he or she is satisfied
with the results. Since seemingly similar values of parameters can result in drastically
different behaviors, and quite different parameters can result in seemingly similar be-
haviors, how do we know that the resulting model is correct? How do we know that its
behavior is equivalent to that of the neuron we want to study? And what is equivalent
in this case? Now, you are primed to consider dynamical systems. If not, see Fig.1.8.
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1.2 Dynamical Systems

In chapter 2 we introduce the Hodgkin-Huxley formalism to describe neuronal dynamics
in terms of activation and inactivation of voltage-gated conductances. An important
result of the Hodgkin-Huxley studies is that neurons are dynamical systems, so they
should be studied as such. Below we mention some of the important concepts of
dynamical systems theory. The reader does not have to follow all the details of this
section because the concepts are explained in greater detail in subsequent chapters.

A dynamical system consists of a set of variables that describe its state and a
law that describes the evolution of the state variables with time (i.e., how the state
of the system in the next moment of time depends on the input and its state in the
previous moment of time). The Hodgkin-Huxley model is a four-dimensional dynamical
system because its state is uniquely determined by the membrane potential, V , and so-
called gating variables n,m, and h for persistent K+ and transient Na+ currents. The
evolution law is given by a four-dimensional system of ordinary differential equations.

Typically, all variables describing neuronal dynamics can be classified into four
classes, according to their function and the time scale.

1. Membrane potential.

2. Excitation variables, such as activation of a Na+ current. These variables are
responsible for the upstroke of the spike.

3. Recovery variables, such as inactivation of a Na+ current and activation of a fast
K+ current. These variables are responsible for the repolarization (downstroke)
of the spike.

4. Adaptation variables, such as activation of slow voltage- or Ca2+-dependent cur-
rents. These variables build up during prolonged spiking and can affect excitabil-
ity in the long run.

The Hodgkin-Huxley model does not have variables of the fourth type, but many
neuronal models do, especially those exhibiting bursting dynamics.

1.2.1 Phase Portraits

The power of the dynamical systems approach to neuroscience, as well as to many
other sciences, is that we can tell something, or many things, about a system without
knowing all the details that govern the system evolution. We do not even use equations
to do that! Some may even wonder why we call it a mathematical theory.

As a start, let us consider a quiescent neuron whose membrane potential is rest-
ing. From the dynamical systems point of view, there are no changes of the state
variables of such a neuron; hence it is at an equilibrium point. All the inward currents
that depolarize the neuron are balanced, or equilibrated, by the outward currents that
hyperpolarize it. If the neuron remains quiescent despite small disturbances and mem-
brane noise, as in Fig.1.9a (top), then we conclude that the equilibrium is stable. Isn’t
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Figure 1.9: Resting, excitable, and periodic spiking activity correspond to a stable
equilibrium (a and b) or limit cycle (c), respectively.

it amazing that we can reach such a conclusion without knowing the equations that
describe the neuron’s dynamics? We do not even know the number of variables needed
to describe the neuron; it could be infinite, for all we care.

In this book we introduce the notions of equilibria, stability, threshold, and attrac-
tion domains using one- and two-dimensional dynamical systems, e.g., the INa,p+IK-
model with instantaneous Na+ kinetics. The state of this model is described by the
membrane potential, V , and the activation variable, n, of the persistent K+ current, so
it is a two-dimensional vector (V, n). Instantaneous activation of the Na+ current is a
function of V , so it does not result in a separate variable of the model. The evolution
of the model is a trajectory (V (t), n(t)) on the V ×n – plane. Depending on the initial
point, the system can have many trajectories, such as those depicted in Fig.1.9a (bot-
tom). Time is not explicitly present in the figure, but units of time may be thought
of as plotted along each trajectory. All of the trajectories in the figure are attracted
to the stable equilibrium denoted by the black dot, called an attractor. The overall
qualitative description of dynamics can be obtained through the study of the phase
portrait of the system, which depicts certain special trajectories (equilibria, separatri-
ces, limit cycles) that determine the topological behavior of all the other trajectories in
the phase space. Probably 50 percent of illustrations in this book are phase portraits.

A fundamental property of neurons is excitability, illustrated in Fig.1.9b. The neu-
ron is resting, i.e., its phase portrait has a stable equilibrium. Small perturbations,
such as A, result in small excursions from the equilibrium, denoted as PSP (postsynap-
tic potential). Larger perturbations, such as B, are amplified by the neuron’s intrinsic
dynamics and result in the spike response. To understand the dynamic mechanism of
such amplification, we need to consider the geometry of the phase portrait near the
resting equilibrium, i.e., in the region where the decision to fire or not to fire is made.
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Figure 1.10: Rhythmic transitions between resting and spiking modes result in bursting
behavior.
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Figure 1.11: As the magnitude of the injected current slowly increases, the neurons
bifurcate from resting (equilibrium) mode to tonic spiking (limit cycle) mode.

If we inject a sufficiently strong current into the neuron, we bring it to a pacemaking
mode, so that it exhibits periodic spiking activity, as in Fig.1.9c. From the dynamical
systems point of view, the state of such a neuron has a stable limit cycle, also known as
a stable periodic orbit. The electrophysiological details of the neuron (i.e., the number
and the type of currents it has, their kinetics, etc.) determine only the location, the
shape, and the period of the limit cycle. As long as the limit cycle exists, the neuron
can have periodic spiking activity. Of course, equilibria and limit cycles can coexist,
so a neuron can be switched from one mode to another by a transient input. The
famous example is the permanent extinguishing of ongoing spiking activity in the squid
giant axon by a brief transient depolarizing pulse of current applied at a proper phase
(Guttman et al. 1980) – a phenomenon predicted by John Rinzel (1978) purely on
the basis of theoretical analysis of the Hodgkin-Huxley model. The transition between
resting and spiking modes could be triggered by intrinsic slow conductances, resulting
in the bursting behavior in Fig.1.10.
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1.2.2 Bifurcations

Now suppose that the magnitude of the injected current is a parameter that we can
control, e.g., we can ramp it up, as in Fig.1.11. Each cell in the figure is quiescent
at the beginning of the ramps, so its phase portrait has a stable equilibrium and it
may look like the one in Fig.1.9a or Fig.1.9b. Then it starts to fire tonic spikes, so
its phase portrait has a limit cycle attractor and it may look like the one in Fig.1.9c,
with a white circle denoting an unstable resting equilibrium. Apparently there is some
intermediate level of injected current that corresponds to the transition from resting
to sustained spiking, i.e., from the phase portrait in Fig.1.9b to Fig.1.9c. What does
the transition look like?

From the dynamical systems point of view, the transition corresponds to a bifurca-
tion of neuron dynamics, i.e., a qualitative change of phase portrait of the system. For
example, there is no bifurcation going from the phase portrait in Fig.1.9a to that in
Fig.1.9b, since both have one globally stable equilibrium; the difference in behavior is
quantitative but not qualitative. In contrast, there is a bifurcation going from Fig.1.9b
to Fig.1.9c, since the equilibrium is no longer stable and another attractor, limit cycle,
has appeared. The neuron is not excitable in Fig.1.9a but it is in Fig.1.9b, simply
because the former phase portrait is far from the bifurcation and the latter is near.

In general, neurons are excitable because they are near bifurcations from resting
to spiking activity, so the type of the bifurcation determines the excitable properties
of the neuron. Of course, the type depends on the neuron’s electrophysiology. An
amazing observation is that there could be millions of different electrophysiological
mechanisms of excitability and spiking, but there are only four – yes, four – different
types of bifurcations of equilibrium that a system can undergo without any additional
constraints, such as symmetry. Thus, considering these four bifurcations in a general
setup, we can understand excitable properties of many models, even those that have not
been invented yet. What is even more amazing, we can understand excitable properties
of neurons whose currents are not measured and whose models are not known, provided
we can experimentally identify which of the four bifurcations the resting state of the
neuron undergoes.

The four bifurcations are summarized in Fig.1.12, which plots the phase portrait
before (left), at (center), and after (right) a particular bifurcation occurs. Mathemati-
cians refer to these bifurcations as being of codimension-1 because we need to vary only
one parameter, e.g., the magnitude of the injected DC current I, to observe the bifur-
cations reliably in simulations or experiments. There are many more codimension-2, 3,
(etc.), bifurcations, but they need special conditions to be observed. We discuss these
in chapter 6.

Let us consider the four bifurcations and their phase portraits in Fig.1.12. The
horizontal and vertical axes are the membrane potential with instantaneous activation
variable and a recovery variable, respectively. At this stage, the reader is not required
to fully understand the intricacies of the phase portraits in the figure, since they will
be explained systematically in later chapters.
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• Saddle-node bifurcation. As the magnitude of the injected current or any other
bifurcation parameter changes, a stable equilibrium corresponding to the resting
state (black circle marked “node” in Fig.1.12a) is approached by an unstable
equilibrium (white circle marked “saddle”); they coalesce and annihilate each
other, as in Fig.1.12a (middle). Since the resting state no longer exists, the tra-
jectory describing the evolution of the system jumps to the limit cycle attractor,
indicating that the neuron starts to fire tonic spikes. Notice that the limit cy-
cle, or some other attractor, must coexist with the resting state in order for the
transition resting → spiking to occur.

• Saddle-node on invariant circle bifurcation is similar to the saddle-node bifurca-
tion except that there is an invariant circle at the moment of bifurcation, which
then becomes a limit cycle attractor, as in Fig.1.12b.

• Subcritical Andronov-Hopf bifurcation. A small unstable limit cycle shrinks to
a stable equilibrium and makes it lose stability, as in Fig.1.12c. Because of
instabilities, the trajectory diverges from the equilibrium and approaches a large-
amplitude spiking limit cycle or some other attractor.

• Supercritical Andronov-Hopf bifurcation. The stable equilibrium loses stability
and gives birth to a small-amplitude limit cycle attractor, as in Fig.1.12d. As
the magnitude of the injected current increases, the amplitude of the limit cycle
increases and it becomes a full-size spiking limit cycle.

Notice that there is a coexistence of resting and spiking states in the case of saddle-
node and subcritical Andronov-Hopf bifurcations, but not in the other two cases. Such
a coexistence reveals itself via a hysteresis behavior when the injected current slowly
increases and then decreases past the bifurcation value, because the transitions “resting
→ spiking” and “spiking → resting” occur at different values of the current. In addition,
brief stimuli applied at the appropriate times can switch the activity from spiking to
resting and back. There are also spontaneous noise-induced transitions between the
two modes that result in the stuttering spiking that, for instance, is exhibited by
the so-called fast spiking (FS) cortical interneurons when they are kept close to the
bifurcation (Tateno et al. 2004). Some bistable neurons have a slow adaptation current
that activates during the spiking mode and impedes spiking, often resulting in bursting
activity.

Systems undergoing Andronov-Hopf bifurcations, whether subcritical or supercrit-
ical, exhibit damped oscillations of membrane potential, whereas systems near saddle-
node bifurcations, whether on or off an invariant circle, do not. The existence of
small amplitude oscillations creates the possibility of resonance to the frequency of the
incoming pulses, as in Fig.1.7, and other interesting features.

We refer to neurons with damped subthreshold oscillations as resonators and to
those that do not have this property as integrators. We refer to the neurons that ex-
hibit the coexistence of resting and spiking states, at least near the transition from
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Figure 1.14: Frequency-current (F-I) curves of cortical pyramidal neuron and brainstem
mesV neuron from Fig.7.3. These are the same neurons used in the ramp experiment
in Fig.1.11.

resting to spiking, as bistable, and to those that do not, monostable. The four bifur-
cations in Fig.1.12 are uniquely defined by these two features. For example, a bistable
resonator is a neuron undergoing subcritical Andronov-Hopf bifurcation, and a monos-
table integrator is a neuron undergoing saddle-node on invariant circle bifurcation (see
Fig.1.13). Cortical fast spiking (FS) and regular spiking (RS) neurons, studied in
chapter 8, are typical examples of the former and the latter, respectively.

1.2.3 Hodgkin Classification

Hodgkin (1948) was the first to study bifurcations in neuronal dynamics, years before
the mathematical theory of bifurcations was developed. He stimulated squid axons
with pulses of various amplitudes and identified three classes of responses:

• Class 1 neural excitability. Action potentials can be generated with arbitrarily
low frequency, depending on the strength of the applied current.

• Class 2 neural excitability. Action potentials are generated in a certain frequency
band that is relatively insensitive to changes in the strength of the applied current.
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• Class 3 neural excitability. A single action potential is generated in response to a
pulse of current. Repetitive (tonic) spiking can be generated only for extremely
strong injected currents or not at all.

The qualitative distinction between the classes is that the frequency-current relation
(the F-I curve in Fig.1.14) starts from zero and continuously increases for Class 1
neurons, is discontinuous for Class 2 neurons, and is not defined at all for Class 3
neurons.

Obviously, neurons belonging to different classes have different neurocomputational
properties. Class 1 neurons, which include cortical excitatory pyramidal neurons,
can smoothly encode the strength of the input into the output firing frequency, as
in Fig.1.11 (left). In contrast, Class 2 neurons, such as fast-spiking (FS) cortical in-
hibitory interneurons, cannot do that; instead, they fire in a relatively narrow frequency
band, as in Fig.1.11 (right). Class 3 neurons cannot exhibit sustained spiking activ-
ity, so Hodgkin regarded them as “sick” or “unhealthy”. There are other distinctions
between the classes, which we discuss later.

Different classes of excitability occur because neurons have different bifurcations
of resting and spiking states – a phenomenon first explained by Rinzel and Ermen-
trout (1989). If ramps of current are injected to measure the F-I curves, then Class
1 excitability occurs when the neuron undergoes the saddle-node bifurcation on an
invariant circle depicted in Fig.1.12b. Indeed, the period of the limit cycle attractor
is infinite at the bifurcation point, and then it decreases as the bifurcation parameter
– say, the magnitude of the injected current – increases. The other three bifurcations
result in Class 2 excitability. Indeed, the limit cycle attractor exists and has a finite
period when the resting state in Fig.1.12 undergoes a subcritical Andronov-Hopf bi-
furcation, so emerging spiking has a nonzero frequency. The period of the small limit
cycle attractor appearing via supercritical Andronov-Hopf bifurcation is also finite, so
the frequency of oscillations is nonzero, but their amplitudes are small. In contrast
to the common and erroneous folklore, the saddle-node bifurcation (off-limit cycle)
also results in Class 2 excitability because the limit cycle has a finite period at the
bifurcation. There is a considerable latency (delay) to the first spike in this case,
but the subsequent spiking has nonzero frequency. Thus, the simple scheme “Class 1
= saddle-node, Class 2 = Hopf” that permeates many publications is unfortunately
incorrect.

When pulses of current are used to measure the F-I curve, as in Hodgkin’s exper-
iments, the firing frequency depends on factors besides the type of the bifurcation of
the resting state. In particular, low-frequency firing can be observed in systems near
Andronov-Hopf bifurcations, as we show in chapter 7. To avoid possible confusion, we
define the class of excitability only on the basis of slow ramp experiments.

Hodgkin’s classification has an important historical value, but it is of little use for
the dynamic description of a neuron, since naming a class of excitability of a neuron
does not tell much about the bifurcations of the resting state. Indeed, it says only
that saddle-node on invariant circle bifurcation (Class 1) is different from the other
three bifurcations (Class 2), and only when ramps are injected. Dividing neurons into
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integrators and resonators with bistable or monostable activity is more informative,
so we adopt the classification in Fig.1.13 in this book. In this classification, a Class 1
neuron is a monostable integrator, whereas a Class 2 neuron can be a bistable integrator
or a resonator.

1.2.4 Neurocomputational properties

Using the same arrangement as in Fig.1.13, we depict typical geometry of phase
portraits near the four bifurcations in Fig.1.15. Let us use the portraits to explain
what happens “near the threshold”, i.e., near the place where the decision to fire or
not to fire is made. To simplify our geometrical analysis, we assume here that neurons
receive shock inputs, i.e., brief but strong pulses of current that do not change the
phase portraits, but only push or reset the state of the neuron into various regions of
the phase space. We consider these and other cases in detail in chapter 7.

The horizontal axis in each plot in Fig.1.15 corresponds to the membrane potential
V with instantaneous Na+ current, and the vertical axis corresponds to a recovery vari-
able, say activation of K+ current. Black circles denote stable equilibria corresponding
to the neuronal resting state. Spiking limit cycle attractors correspond to sustained
spiking states, which exist in the two cases depicted in the left half of the figure corre-
sponding to the bistable dynamics. The limit cycles are surrounded by shaded regions
– their attraction domains. The white region is the attraction domain of the equilib-
rium. To initiate spiking, the external input should push the state of the system into
the shaded region, and to extinguish spiking, the input should push the state back into
the white region.

There are no limit cycles in the two cases depicted in the right half of the figure,
so the entire phase space is the attraction domain of the stable equilibrium, and the
dynamics are monostable. However, if the trajectory starts in the shaded region, it
makes a large-amplitude rotation before returning to the equilibrium – a transient
spike. Apparently, to elicit such a spike, the input should push the state of the system
into the shaded region.

Now let us contrast the upper and lower halves of the figure, corresponding to
integrators and resonators, respectively. We distinguish these two modes of operation
on the basis of the existence of subthreshold oscillations near the equilibrium.

First, let us show that inhibition impedes spiking in integrators, but can promote it
in resonators. In the integrator, the shaded region is in the depolarized voltage range,
i.e., to the right of the equilibrium. Excitatory inputs push the state of the system
toward the shaded region, while inhibitory inputs push it away. In resonators, both
excitation and inhibition push the state toward the shaded region, because the region
wraps around the equilibrium and can be reached along any direction. This explains
the rebound spiking phenomenon depicted in Fig.1.6.

Integrators have all-or-none spikes; resonators may not. Indeed, any trajectory
starting in the shaded region in the upper half of Fig.1.15 has to rotate around the
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Figure 1.15: The geometry of phase portraits of excitable systems near four bifurcations
can explain many neurocomputational properties (see section 1.2.4 for details).

white circle at the top that corresponds to an unstable equilibrium. Moreover, the
state of the system is quickly attracted to the spiking trajectory and moves along that
trajectory, thereby generating a stereotypical spike. A resonator neuron also can fire
large amplitude spikes when its state is pushed to or beyond the trajectory denoted
“spike”. Such neurons generate subthreshold responses when the state slides along
the smaller trajectory denoted PSP; they also can generate spikes of an intermediate
amplitude when the state is pushed between the PSP and “spike” trajectories, which
explains the partial-amplitude spiking in Fig.1.5b or in the squid axon in Fig.7.26. The
set of initial conditions corresponding to such spiking is quite small, so typical spikes
have large amplitudes and partial spikes are rare.

Integrators have well-defined thresholds; resonators may not. The white circles near
the resting states of integrators in Fig.1.15 are called saddles. They are stable along the
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vertical direction and unstable along the horizontal direction. The two trajectories
that lead to the saddle along the vertical direction are called separatrices because
they separate the phase space into two regions – in this case, white and shaded. The
separatrices play the role of thresholds since only those perturbations that push the
state of the system beyond them result in a spike. The closer the state of the system
is to the separatrices, the longer it takes to converge and then diverge from the saddle,
resulting in a long latency to the spike. Notice that the threshold is not a point, but
a tilted curve that spans a range of voltage values.

Resonators have a well-defined threshold in the case of subcritical Andronov-Hopf
bifurcation: it is the small unstable limit cycle that separates the attraction domains
of stable equilibrium and spiking limit cycle. Trajectories inside the small cycle spi-
ral toward the stable equilibrium, whereas trajectories outside the cycle spiral away
from it and eventually lead to sustained spiking activity. When a neuronal model is
far from the subcritical Andronov-Hopf bifurcation, its phase portrait may look sim-
ilar to the one corresponding to the supercritical Andronov-Hopf bifurcation. The
narrow shaded band in the figure is not a threshold manifold but a fuzzy thresh-
old set called “quasi-threshold” by FitzHugh (1955). Many resonators, including the
Hodgkin-Huxley model, have quasi-thresholds instead of thresholds. The width of the
quasi-threshold in the Hodgkin-Huxley model is so narrow that for all practical reasons
it may be assumed to be just a curve.

Integrators integrate, resonators resonate. Now consider inputs consisting of multi-
ple pulses, e.g., a burst of spikes. Integrators prefer high-frequency inputs; the higher
the frequency, the sooner they fire. Indeed, the first spike of such an input, marked
“1” in the top-right phase portrait in Fig.1.15, increases the membrane potential and
shifts the state to the right, toward the threshold. Since the state of the system is
still in the white area, it slowly converges back to the stable equilibrium. To cross
the threshold manifold, the second pulse must arrive shortly after the first one. The
reaction of a resonator to a pair of pulses is quite different. The first pulse initiates a
damped subthreshold oscillation of the membrane potential, which looks like a spiral
in the bottom-right phase portrait in Fig.1.15. The effect of the second pulse depends
on its timing. If it arrives after the trajectory makes half a rotation, marked “2” in the
figure, it cancels the effect of the first pulse. If it arrives after the trajectory makes a
full rotation, marked “3” in the figure, it adds to the first pulse and either increases the
amplitude of subthreshold oscillation or evokes a spike response. Thus, the response
of the resonator neuron depends on the frequency content of the input, as in Fig.1.7.

Integrators and resonators constitute two major modes of activity of neurons. Most
cortical pyramidal neurons, including the regular spiking (RS), intrinsically bursting
(IB), and chattering (CH) types considered in Chap. 8, are integrators. So are thalam-
ocortical neurons in the relay mode of firing, and neostriatal spiny projection neurons.
Most cortical inhibitory interneurons, including the FS type, are resonators. So are
brainstem mesencephalic V neurons and stellate neurons of the entorhinal cortex. Some
cortical pyramidal neurons and low-threshold spiking (LTS) interneurons can be at the
border of transition between integrator and resonator modes. Such a transition corre-
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spike

Figure 1.16: Phase portrait of a system near a
Bogdanov-Takens bifurcation that corresponds to
the transition from integrator to resonator mode.

sponds to another bifurcation, which has codimension-2, and hence it is less likely to
be encountered experimentally. We consider this and other uncommon bifurcations in
detail later. The phase portrait near the bifurcation is depicted in Fig.1.16, and it is a
good exercise for the reader to explain why such a system has damped oscillations and
postinhibitory responses, yet a well-defined threshold, all-or-none spikes, and possibly
long latencies.

Of course, figures 1.15 and 1.16 cannot encompass all the richness of neuronal behav-
ior, otherwise this book would be only 19pages long (this book is actually quite short;
most of the space is taken by figures, exercises, and solutions). Many aspects of neu-
ronal dynamics depend on other bifurcations, e.g., those corresponding to appearance
and disappearance of spiking limit cycles. These bifurcations describe the transitions
from spiking to resting, and they are especially important when we consider bursting
activity. In addition, we need to take into account the relative geometry of equilibria,
limit cycles, and other relevant trajectories, and how they depend on the parameters of
the system, such as maximal conductances, and activation time constants. We explore
all these issues systematically in subsequent chapters.

In chapter 2 we review some of the most fundamental concepts of neuron elec-
trophysiology, culminating with the Hodgkin-Huxley model. This chapter is aimed
at mathematicians learning neuroscience. In chapters 3 and 4 we use one- and two-
dimensional neuronal models, respectively, to review some of the most fundamental
concepts of dynamical systems, such as equilibria, limit cycles, stability, attraction
domain, nullclines, phase portrait, and bifurcation. The material in these chapters,
aimed at biologists learning the language of dynamical systems, is presented with the
emphasis on geometrical rather than mathematical intuition. In fact, the spirit of
the entire book is to explain concepts by using pictures, not equations. Chapter 5
explores phase portraits of various conductance-based models and the relations be-
tween ionic currents and dynamic behavior. In Chapter 6 we use the INa,p+IK-model
to systematically introduce the geometric bifurcation theory. Chapter 7, probably the
most important chapter of the book, applies the theory to explain many computational
properties of neurons. In fact, all the material in the previous chapters is given so that
the reader can understand this chapter. In chapter 8 we use a simple phenomenological
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model to simulate many cortical, hippocampal, and thalamic neurons. This chapter
contains probably the most comprehensive up-to-date review of various firing patterns
exhibited by mammalian neurons. In chapter 9 we introduce the electrophysiological
and topological classification of bursting dynamics, as well as some useful methods to
study the bursters. Finally, the last and the most mathematically advanced chapter
of the book, Chap. 10, deals with coupled neurons. There we show how the details of
the spike generation mechanism of neurons affect neurons’ collective properties, such
as synchronization.

1.2.5 Building Models (Revisited)

To have a good model of a neuron, it is not enough to put the right kind of currents
together and tune the parameters so that the model can fire spikes. It is not even
enough to reproduce the right input resistance, rheobase, and firing frequencies. The
model has to reproduce all the neurocomputational features of the neuron, starting with
the coexistence of resting and spiking states, spike latencies, subthreshold oscillations,
and rebound spikes, among others.

A good way to start is to determine what kind of bifurcations the neuron under
consideration undergoes and how the bifurcations depend on neuromodulators and
pharmacological blockers. Instead of or in addition to measuring neuronal responses
to get the kinetic parameters, we need to measure them to get the right bifurcation
behavior. Only in this case we can be sure that the behavior of the model is equivalent
to that of the neuron, even if we omitted a current or guessed some of the parameters
incorrectly.

Implementation of this research program is still a pipe dream. The people who
understand the mathematical aspects of neuron dynamics – those who see beyond
conductances and currents – usually do not have the opportunity to do experiments.
Conversely, those who study neurons in vitro or in vivo on a daily basis – those who see
spiking, bursting, and oscillations; those who can manipulate the experimental setup
to test practically any aspect of neuronal activity – do not usually see the value of
studying phase portraits, bifurcations, and nonlinear dynamics in general. One of the
goals of this book is to change this state and bring these two groups of people closer
together.



Introduction 21

Review of Important Concepts

• Neurons are dynamical systems.

• The resting state of neurons corresponds to a stable equilibrium; the
tonic spiking state corresponds to a limit cycle attractor.

• Neurons are excitable because the equilibrium is near a bifurcation.

• There are many ionic mechanisms of spike generation, but only four
generic bifurcations of equilibria.

• These bifurcations divide neurons into four categories: integrators
or resonators, monostable or bistable.

• Analyses of phase portraits at bifurcations explain why some neu-
rons have well-defined thresholds, all-or-none spikes, postinhibitory
spikes, frequency preference, hysteresis, and so on, while others do
not.

• These features, and not ionic currents per se, determine the neuronal
responses, i.e., the kind of computations neurons do.

• A good neuronal model must reproduce not only electrophysiology
but also the bifurcation dynamics of neurons.

Bibliographical Notes

Richard FitzHugh at the National Institutes of Health (NIH) pioneered the phase plane
analysis of neuronal models with the view to understanding their neurocomputational
properties. He was the first to analyze the Hodgkin-Huxley model (FitzHugh 1955;
years before they received the Nobel Prize) and to prove that it has neither threshold
nor all-or-none spikes. FitzHugh (1961) introduced the simplified model of excitability
(see Fig.1.18) and showed that one can get the right kind of neuronal dynamics in mod-
els lacking conductances and currents. Nagumo et al. (1962) designed a corresponding
tunnel diode circuit, so the model is called the FitzHugh-Nagumo oscillator. Chapter 8
deals with such simplified models. The history of the development of FitzHugh-Nagumo
model is reviewed by Izhikevich and FitzHugh (2006).

FitzHugh’s research program was further developed by John Rinzel and G. Bard
Ermentrout (see Fig.1.19 and Fig.1.20). In their 1989 seminal paper, Rinzel and Er-
mentrout revived Hodgkin’s classification of excitability and pointed out the connection
between the behavior of neuronal models and the bifurcations they exhibit. (They also
referred to the excitability as “type I” or “type II”). Unfortunately, many people treat



22 Introduction

Figure 1.17: Richard FitzHugh in 1984.
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Figure 1.18: Phase portrait and physiological state diagram of FitzHugh-Nagumo
model V̇ = V − V 3/3 − W + I, Ẇ = 0.08(V + 0.7 − 0.8W ). The meaning of curves
and trajectories is explained in chapter 4. (Reproduced from Izhikevich and FitzHugh
(2006) with permission.)
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Figure 1.19: John Rinzel in 2004. Depicted on his T-shirt is the cover of the first issue
of Journal of Computational Neuroscience, in which the Pinsky-Rinzel (1994) model
appeared.

Figure 1.20: G. Bard Ermentrout (G. stands for George) with his parrot, Junior, in
1983.
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the connection in a simpleminded fashion and incorrectly identify “type I = saddle-
node, type II = Hopf”. If only life were so simple!

The geometrical analysis of neuronal models was further developed by, among oth-
ers, Izhikevich (2000a), who stressed the integrator and resonator modes of operation
and made connections to other neurocomputational properties.

The neuroscience and mathematics parts of this book are standard, though many
connections are new. The literature sources are listed at the end of each chapter.
Among many outstanding books on computational neuroscience, the author especially
recommends Spikes, Decisions, and Actions by Wilson (1999), Biophysics of Com-
putation by Koch (1999), Theoretical Neuroscience by Dayan and Abbott (2001), and
Foundations of Cellular Neurophysiology by Johnston and Wu (1995). The present vol-
ume complements these excellent books in the sense that it is more ambitious, focused,
and thorough in dealing with neurons as dynamical systems. Though its views may
be biased by the author’s philosophy and taste, the payoffs in understanding neuronal
dynamics are immense, provided the reader has enough patience and perseverance to
follow the author’s line of thought.

The NEURON simulation environment is described by Hines (1989) and Carnevale
and Hines (2006) (http://www.neuron.yale.edu); the GENESIS environment, by
Bower and Beeman (1995) (http://www.genesis-sim.org); the XPP environment,
by Ermentrout (2002). The author of this book uses MATLAB, which has become a
standard computational tool in science and engineering. MATLAB is the registered
trademark of The MathWorks, Inc. (http://www.mathworks.com).



Chapter 2

Electrophysiology of Neurons

In this chapter we remind the reader of some fundamental concepts of neuronal electro-
physiology that are necessary to understand the rest of the book. We start with ions
and currents, and move quickly toward the dynamics of the Hodgkin-Huxley model.
If the reader is already familiar with the Hodgkin-Huxley formalism, this chapter can
be skipped. Our exposition is brief, and it cannot substitute for a good introductory
neuroscience course or the reading of such excellent textbooks as Theoretical Neu-
roscience by Dayan and Abbott (2001), Foundations of Cellular Neurophysiology by
Johnston and Wu (1995), Biophysics of Computation by Koch (1999), or Ion Channels
of Excitable Membranes by Hille (2001).

2.1 Ions

Electrical activity in neurons is sustained and propagated via ionic currents through
neuron membranes. Most of these transmembrane currents involve one of four ionic
species: sodium (Na+), potassium (K+), calcium (Ca2+), or chloride (Cl−). The first
three have a positive charge (cations) and the fourth has a negative charge (anion). The
concentrations of these ions are different on the inside and the outside of a cell, which
creates electrochemical gradients – the major driving forces of neural activity. The
extracellular medium has a high concentration of Na+ and Cl− (salty, like seawater)
and a relatively high concentration of Ca2+. The intracellular medium has high con-
centrations of K+ and negatively charged molecules (denoted by A−), as we illustrate
in Fig.2.1.

The cell membrane has large protein molecules forming channels through which
ions (but not A−) can flow according to their electrochemical gradients. The flow of
Na+ and Ca2+ ions is not significant, at least at rest, but the flow of K+ and Cl− ions
is. This, however, does not eliminate the concentration asymmetry for two reasons.

• Passive redistribution. The impermeable anions A− attract more K+ into the cell
(opposites attract) and repel more Cl− out of the cell, thereby creating concen-
tration gradients.

• Active transport. Ions are pumped in and out of the cell via ionic pumps. For
example, the Na+-K+ pump depicted in Fig.2.1 pumps out three Na+ ions for
every two K+ ions pumped in, thereby maintaining concentration gradients.

25
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Figure 2.1: Ion concentrations and Nernst equilibrium potentials (2.1) in a typical
mammalian neuron (modified from Johnston and Wu 1995). A− are membrane-
impermeant anions. Temperature T = 37◦C (310◦K).

2.1.1 Nernst Potential

There are two forces that drive each ion species through the membrane channel: concen-
tration and electric potential gradients. First, the ions diffuse down the concentration
gradient. For example, the K+ ions depicted in Fig.2.2a diffuse out of the cell because
K+ concentration inside is higher than that outside. While exiting the cell, K+ ions
carry a positive charge and leave a net negative charge inside the cell (consisting mostly
of impermeable anions A−), thereby producing the outward current. The positive and
negative charges accumulate on the opposite sides of the membrane surface, creating
an electric potential gradient across the membrane – transmembrane potential or mem-
brane voltage. This potential slows the diffusion of K+, since K+ ions are attracted
to the negatively charged interior and repelled from the positively charged exterior of
the membrane, as we illustrate in Fig.2.2b. At some point an equilibrium is achieved:
the concentration gradient and the electric potential gradient exert equal and opposite
forces that counterbalance each other, and the net cross-membrane current is zero, as
in Fig.2.2c. The value of such an equilibrium potential depends on the ionic species,
and it is given by the Nernst equation (Hille 2001):

Eion =
RT

zF
ln

[Ion]out

[Ion]in
, (2.1)

where [Ion]in and [Ion]out are concentrations of the ions inside and outside the cell,
respectively; R is the universal gas constant (8, 315 mJ/(K◦·Mol)); T is temperature
in degrees Kelvin (K◦ = 273.16+C◦); F is Faraday’s constant (96, 480 coulombs/Mol),
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Figure 2.2: Diffusion of K+ ions down the concentration gradient though the membrane
(a) creates an electric potential force pointing in the opposite direction (b) until the
diffusion and electrical forces counter each other (c). The resulting transmembrane
potential (2.1) is referred to as the Nernst equilibrium potential for K+.

z is the valence of the ion (z = 1 for Na+ and K+; z = −1 for Cl−; and z = 2 for
Ca2+). Substituting the numbers, taking log10 instead of natural ln and using body
temperature T = 310◦K (37◦C) results in

Eion ≈ 62 log
[Ion]out

[Ion]in
(mV)

for monovalent (z = 1) ions. Nernst equilibrium potentials in a typical mammalian
neuron are summarized in Fig.2.1.

2.1.2 Ionic Currents and Conductances

In the rest of the book V denotes the membrane potential and ENa, ECa, EK, and ECl

denote the Nernst equilibrium potentials. When the membrane potential equals the
equilibrium potential, say EK, the net K+ current, denoted as IK (μA/cm2), is zero
(this is the definition of the Nernst equilibrium potential for K+). Otherwise, the net
K+ current is proportional to the difference of potentials; that is,

IK = gK (V − EK) ,

where the positive parameter gK (mS/cm2) is the K+ conductance and (V −EK) is the
K+ driving force. The other major ionic currents,

INa = gNa (V − ENa) , ICa = gCa (V − ECa) , ICl = gCl (V − ECl) ,
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sentation of a patch of cell membrane.

could also be expressed as products of nonlinear conductances and corresponding driv-
ing forces. A better description of membrane currents, especially Ca2+ current, is
provided by the Goldman-Hodgkin-Katz equation (Hille 2001), which we do not use in
this book.

When the conductance is constant, the current is said to be Ohmic. In general,
ionic currents in neurons are not Ohmic, since the conductances may depend on time,
membrane potential, and pharmacological agents, e.g., neurotransmitters, neuromodu-
lators, second-messengers, etc. It is the time-dependent variation in conductances that
allows a neuron to generate an action potential, or spike.

2.1.3 Equivalent Circuit

It is traditional to represent electrical properties of membranes in terms of equivalent
circuits similar to the one depicted in Fig.2.3. According to Kirchhoff’s law, the total
current, I, flowing across a patch of a cell membrane is the sum of the membrane
capacitive current CV̇ (the capacitance C ≈ 1.0 μF/cm2 in the squid axon) and all the
ionic currents

I = CV̇ + INa + ICa + IK + ICl ,

where V̇ = dV/dt is the derivative of the voltage variable V with respect to time t.
The derivative arises because it takes time to charge the membrane. This is the first
dynamic term in the book! We write this equation in the standard “dynamical system”
form

CV̇ = I − INa − ICa − IK − ICl (2.2)

or

CV̇ = I − gNa (V − ENa) − gCa (V − ECa) − gK (V − EK) − gCl (V − ECl) . (2.3)

If there are no additional current sources or sinks, such as synaptic current, axial
current, or tangential current along the membrane surface, or current injected via an
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electrode, then I = 0. In this case, the membrane potential is typically bounded by
the equilibrium potentials in the order (see Fig.2.4)

EK < ECl < V(at rest) < ENa < ECa ,

so that INa, ICa < 0 (inward currents) and IK, ICl > 0 (outward currents). From (2.2)
it follows that inward currents increase the membrane potential, that is, make it more
positive (depolarization), whereas outward currents decrease it, that is, make it more
negative (hyperpolarization). Note that ICl is called an outward current even though
the flow of Cl− ions is inward; the ions bring negative charge inside the membrane,
which is equivalent to positively charged ions leaving the cell, as in IK.

2.1.4 Resting Potential and Input Resistance

If there were only K+ channels, as in Fig.2.2, the membrane potential would quickly
approach the K+ equilibrium potential, EK, which is around −90 mV. Indeed,

C V̇ = −IK = −gK(V − EK)

in this case. However, most membranes contain a diversity of channels. For example,
Na+ channels would produce an inward current and pull the membrane potential toward
the Na+ equilibrium potential, ENa, which could be as large as +90 mV. The value of
the membrane potential at which all inward and outward currents balance each other so
that the net membrane current is zero corresponds to the resting membrane potential.
It can be found from (2.3) with I = 0, by setting V̇ = 0. The resulting expression,

Vrest =
gNaENa + gCaECa + gKEK + gClECl

gNa + gCa + gK + gCl

(2.4)

has a nice mechanistic interpretation: Vrest is the center of mass of the balance depicted
in Fig.2.4. Incidentally, the entire equation (2.3) can be written in the form

C V̇ = I − ginp(V − Vrest) , (2.5)

where
ginp = gNa + gCa + gK + gCl

is the total membrane conductance, called input conductance. The quantity Rinp =
1/ginp is the input resistance of the membrane, and it measures the asymptotic sensi-
tivity of the membrane potential to injected or intrinsic currents. Indeed, from (2.5) it
follows that

V → Vrest + IRinp , (2.6)

so greater values of Rinp imply greater steady-state displacement of V due to the
injection of DC current I.

A remarkable property of neuronal membranes is that ionic conductances, and hence
the input resistance, are functions of V and time. We can use (2.6) to trace an action
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Figure 2.4: Mechanistic interpretation of the resting membrane potential (2.4) as the
center of mass. Na+ conductance increases during the action potential.

potential in a quasi-static fashion, i.e., assuming that time is frozen. When a neuron is
quiescent, Na+ and Ca2+ conductances are relatively small, Vrest is near EK and ECl,
as in Fig.2.4 (top), and so is V . During the upstroke of an action potential, the Na+

or Ca2+ conductance becomes very large; Vrest is near ENa, as in Fig.2.4 (bottom), and
V increases, trying to catch Vrest. This event is, however, quite brief, for the reasons
explained in subsequent sections.

2.1.5 Voltage-Clamp and I-V Relation

In section 2.2 we will study how the membrane potential affects ionic conductances
and currents, assuming that the potential is fixed at certain value Vc controlled by an
experimenter. To maintain the membrane potential constant (clamped), one inserts
a metallic conductor to short-circuit currents along the membrane (space-clamp), and
then injects a current proportional to the difference Vc − V (voltage-clamp), as in
Fig.2.5. From (2.2) and the clamp condition V̇ = 0, it follows that the injected current
I equals the net current generated by the membrane conductances.

In a typical voltage-clamp experiment the membrane potential is held at a certain
resting value Vc and then reset to a new value Vs, as in Fig.2.6a. The injected membrane
current needed to stabilize the potential at the new value is a function of time, the
pre-step holding potential Vc, and the step potential Vs. First, the current jumps to
a new value to accommodate the instantaneous voltage change from Vc to Vs. From
(2.5) we find that the amplitude of the jump is ginp(Vs − Vc). Then, time- and voltage-
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Figure 2.5: Two-wire voltage-clamp experiment on the axon. The top wire is used to
monitor the membrane potential V . The bottom wire is used to inject the current I,
proportional to the difference Vc − V , to keep the membrane potential at Vc.
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dependent processes start to occur and the current decreases and then increases. The
value at the negative peak, marked by the open circle “o” in Fig.2.6, depends only on Vc

and Vs, and it is called the instantaneous current-voltage (I-V) relation, or I0(Vc, Vs).
The asymptotic (t → ∞) value depends only on Vs and it is called the steady-state
current-voltage (I-V) relation, or I∞(Vs).

Both relations, depicted in Fig.2.6b, can be found experimentally (black circles) or
theoretically (curves). The instantaneous I-V relation usually has a non-monotone N-
shape reflecting nonlinear autocatalytic (positive feedback) transmembrane processes,
which are fast enough on the time scale of the action potential that they can be assumed
to have instantaneous kinetics. The steady-state I-V relation measures the asymptotic
values of all transmembrane processes, and it may be monotone (as in the figure) or
not, depending on the properties of the membrane currents. Both I-V relations provide
invaluable quantitative information about the currents operating on fast and slow time
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Figure 2.7: To tease out neuronal currents, biologists employ an arsenal of sophisticated
“clamp” methods, such as current-, voltage-, conductance-, and dynamic-clamp.

scales, and both are useful in building mathematical models of neurons. Finally, when
I∞(V ) = 0, the net membrane current is zero, and the potential is at rest or equilibrium,
which may still be unstable, as we discuss in the next chapter.

2.2 Conductances

Ionic channels are large transmembrane proteins having aqueous pores through which
ions can flow down their electrochemical gradients. The electrical conductance of indi-
vidual channels may be controlled by gating particles (gates), which switch the channels
between open and closed states. The gates may be sensitive to the following factors:

• Membrane potential. Example: voltage-gated Na+ or K+ channels

• Intracellular agents (second-messengers). Example: Ca2+-gated K+ channels

• Extracellular agents (neurotransmitters and neuromodulators). Examples: AMPA,
NMDA, or GABA receptors.

Despite the stochastic nature of transitions between open and closed states in individual
channels, the net current generated by a large population or ensemble of identical
channels can reasonably be described by the equation

I = ḡ p (V − E) , (2.7)

where p is the average proportion of channels in the open state, ḡ is the maximal
conductance of the population, and E is the reverse potential of the current, i.e., the
potential at which the current reverses its direction. If the channels are selective
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and Hille 1998.)

for a single ionic species, then the reverse potential E equals the Nernst equilibrium
potential (2.1) for that ionic species (see exercise 2).

2.2.1 Voltage-Gated Channels

When the gating particles are sensitive to the membrane potential, the channels are
said to be voltage-gated. The gates are divided into two types: those that activate or
open the channels, and those that inactivate or close them (see Fig.2.8). According to
the tradition initiated in the middle of the twentieth century by Hodgkin and Huxley,
the probability of an activation gate being in the open state is denoted by the variable
m (sometimes the variable n is used for K+ and Cl− channels). The probability of an
inactivation gate being in the open state is denoted by the variable h. The proportion
of open channels in a large population is

p = ma hb , (2.8)

where a is the number of activation gates and b is the number of inactivation gates
per channel. The channels can be partially (0 < m < 1) or completely activated
(m = 1); not activated or deactivated (m = 0); inactivated (h = 0); released from
inactivation or deinactivated (h = 1). Some channels do not have inactivation gates
(b = 0), hence p = ma. Such channels do not inactivate, and they result in persistent
currents. In contrast, channels that do inactivate result in transient currents.

Below we describe voltage- and time-dependent kinetics of gates. This description
is often referred to as the Hodgkin-Huxley gate model of membrane channels.
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sient K+ current in layer 5 neocortical pyramidal neurons. (Modified from Korngreen
and Sakmann 2000.)

2.2.2 Activation of Persistent Currents

The dynamics of the activation variable m is described by the first-order differential
equation

ṁ = (m∞(V ) − m)/τ(V ) , (2.9)

where the voltage-sensitive steady-state activation function m∞(V ) and the time con-
stant τ(V ) can be measured experimentally. They have sigmoid and unimodal shapes,
respectively, as in Fig.2.9 (see also Fig.2.20). The steady-state activation function
m∞(V ) gives the asymptotic value of m when the potential is fixed (voltage-clamp).
Smaller values of τ(V ) result in faster dynamics of m.

In Fig.2.10 we depict a typical experiment to determine m∞(V ) of a persistent
current, i.e., a current having no inactivation variable. Initially we hold the membrane
potential at a hyperpolarized value V0 so that all activation gates are closed and I ≈
0. Then we step-increase V to a greater value Vs (s = 1, . . . , 7; see Fig.2.10a) and
hold it there until the current is essentially equal to its asymptotic value, which is
denoted here as Is (s stands for “step”; see Fig.2.10b). Repeating the experiment
for various stepping potentials Vs, one can easily determine the corresponding Is, and
hence the entire steady-state I-V relation, which we depict in Fig.2.10c. According to
(2.7), I(V ) = ḡm∞(V )(V −E), and the steady-state activation curve m∞(V ) depicted
in Fig.2.10d is I(V ) divided by the driving force (V − E) and normalized so that
max m∞(V ) = 1. To determine the time constant τ(V ), one needs to analyze the
convergence rates. In exercise 6 we describe an efficient method to determine m∞(V )
and τ(V ).
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Figure 2.10: An experiment to determine m∞(V ). Shown are simulations of the per-
sistent Na+ current in Purkinje cells (see section 2.3.5).

2.2.3 Inactivation of Transient Currents

The dynamics of the inactivation variable h can be described by the first-order differ-
ential equation

ḣ = (h∞(V ) − h)/τ(V ) , (2.10)

where h∞(V ) is the voltage-sensitive steady-state inactivation function depicted in
Fig.2.11. In Fig.2.12 we present a typical voltage-clamp experiment to determine
h∞(V ) in the presence of activation m∞(V ). It relies on the observation that inacti-
vation kinetics is usually slower than activation kinetics. First, we hold the membrane
potential at a certain pre-step potential Vs for a long enough time that the activation
and inactivation variables are essentially equal to their steady-state values m∞(Vs) and
h∞(Vs), respectively, which have yet to be determined. Then we step-increase V to
a sufficiently high value V0, chosen so that m∞(V0) ≈ 1. If activation is much faster
than inactivation, m approaches 1 after the first few milliseconds, while h continues
to be near its asymptotic value hs = h∞(Vs), which can be found from the peak value
of the current Is ≈ ḡ · 1 · hs(Vs − E). Repeating this experiment for various pre-step
potentials, one can determine the steady-state inactivation curve h∞(V ) in Fig.2.11.
In exercise 6 we describe a better method to determine h∞(V ) that does not rely on
the difference between the activation and inactivation time scales.
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The voltage-sensitive steady-state activation and inactivation functions overlap in
a shaded window depicted in Fig.2.11. Depending on the size of the shaded area in the
figure, the overlap may result in a noticeable “window” current.

2.2.4 Hyperpolarization-Activated Channels

Many neurons in various parts of the brain have channels that are opened by hyperpo-
larization. These channels produce currents that are turned on by hyperpolarization
and turned off by depolarization. Biologists refer to such currents as “exceptional” or
“weird”, and denote them as IQ (queer), If (funny), Ih (hyperpolarization-activated),
or IKir (K+ inward rectifier). (We will consider the last two currents in detail in the
next chapter). Most neuroscience textbooks classify these currents in a special category
– hyperpolarization-activated currents. However, from the theoretical point of view, it
is inconvenient to create special categories. In this book we treat these currents as
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“normal” transient currents with the understanding that they are always activated
(either a = 0 or variable m = 1 in (2.8)), but can be inactivated by depolarization
(variable h → 0) or deinactivated by hyperpolarization (variable h → 1). Moreover,
there is biophysical evidence suggesting that closing/opening of IKir is indeed related
to the inactivation/deinactivation process (Lopatin et al. 1994).

2.3 The Hodgkin-Huxley Model

In section 2.1 we studied how the membrane potential depends on the membrane cur-
rents, assuming that ionic conductances are fixed. In section 2.2 we used the Hodgkin-
Huxley gate model to study how the conductances and currents depend on the mem-
brane potential, assuming that the potential is clamped at different values. In this
section we put it all together and study how the potential ↔ current nonlinear inter-
actions lead to many interesting phenomena, such as generation of action potentials.

2.3.1 Hodgkin-Huxley Equations

One of the most important models in computational neuroscience is the Hodgkin-
Huxley model of the squid giant axon. Using pioneering experimental techniques of that
time, Hodgkin and Huxley (1952) determined that the squid axon carries three major
currents: voltage-gated persistent K+ current with four activation gates (resulting in
the term n4 in the equation below, where n is the activation variable for K+); voltage-
gated transient Na+ current with three activation gates and one inactivation gate (the
term m3h below), and Ohmic leak current, IL, which is carried mostly by Cl− ions.
The complete set of space-clamped Hodgkin-Huxley equations is

C V̇ = I −
IK︷ ︸︸ ︷

ḡKn4(V − EK) −
INa︷ ︸︸ ︷

ḡNam
3h(V − ENa) −

IL︷ ︸︸ ︷
gL(V − EL)

ṅ = αn(V )(1 − n) − βn(V )n

ṁ = αm(V )(1 − m) − βm(V )m

ḣ = αh(V )(1 − h) − βh(V )h ,

where

αn(V ) = 0.01
10 − V

exp(10−V
10

) − 1
,

βn(V ) = 0.125 exp

(−V

80

)
,

αm(V ) = 0.1
25 − V

exp(25−V
10

) − 1
,

βm(V ) = 4 exp

(−V

18

)
,
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αh(V ) = 0.07 exp

(−V

20

)
,

βh(V ) =
1

exp(30−V
10

) + 1
.

These parameters, provided in the original Hodgkin and Huxley paper, correspond
to the membrane potential shifted by approximately 65 mV, so that the resting po-
tential is at V ≈ 0. Hodgkin and Huxley did that for the sake of convenience, but
the shift has led to a lot of confusion over the years. The shifted Nernst equilibrium
potentials are

EK = −12 mV , ENa = 120 mV , EL = 10.6 mV;

(see also exercise 1). Typical values of maximal conductances are

ḡK = 36 mS/cm2 , ḡNa = 120 mS/cm2 , gL = 0.3 mS/cm2.

C = 1 μF/cm2 is the membrane capacitance and I = 0 μA/cm2 is the applied current.
The functions α(V ) and β(V ) describe the transition rates between open and closed
states of the channels. We present this notation only for historical reasons. In the rest
of the book, we use the standard form

ṅ = (n∞(V ) − n)/τn(V ) ,

ṁ = (m∞(V ) − m)/τm(V ) ,

ḣ = (h∞(V ) − h)/τh(V ) ,

where
n∞ = αn/(αn + βn) , τn = 1/(αn + βn) ,
m∞ = αm/(αm + βm) , τm = 1/(αm + βm) ,
h∞ = αh/(αh + βh) , τh = 1/(αh + βh)

as depicted in Fig.2.13. These functions can be approximated by the Boltzmann and
Gaussian functions; see Ex. 4. We also shift the membrane potential back to its true
value, so that the resting state is near -65 mV.

The membrane of the squid giant axon carries only two major currents: transient
Na+ and persistent K+. Most neurons in the central nervous system have additional
currents with diverse activation and inactivation dynamics, which we summarize in
section 2.3.5. The Hodgkin-Huxley formalism is the most accepted model to describe
their kinetics.

Since we are interested in geometrical and qualitative methods of analysis of neu-
ronal models, we assume that all variables and parameters have appropriate scales
and dimensions, but we do not explicitly state them. An exception is the membrane
potential V , whose mV scale is stated in every figure.
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Figure 2.13: Steady-state (in)activation functions (left) and voltage-dependent time
constants (right) in the Hodgkin-Huxley model.

Figure 2.14: Studies of spike-generation mechanism in “giant squid” axons won Alan
Hodgkin and Andrew Huxley the 1963 Nobel Prize for physiology or medicine (shared
with John Eccles). See also Fig. 4.1 in Keener and Sneyd (1998).
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Figure 2.15: Action potential in the Hodgkin-Huxley model.
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Figure 2.16: Positive and negative feedback loops resulting in excited (regenerative)
behavior in neurons.

2.3.2 Action Potential

Recall that when V = Vrest, which is 0 mV in the Hodgkin-Huxley model, all inward
and outward currents balance each other so the net current is zero, as in Fig.2.15. The
resting state is stable: a small pulse of current applied via I(t) produces a small positive
perturbation of the membrane potential (depolarization), which results in a small net
current that drives V back to resting (repolarization). However, an intermediate
size pulse of current produces a perturbation that is amplified significantly because
membrane conductances depend on V . Such a nonlinear amplification causes V to
deviate considerably from Vrest – a phenomenon referred to as an action potential or
spike.

In Fig.2.15 we show a typical time course of an action potential in the Hodgkin-
Huxley system. Strong depolarization increases activation variables m and n and de-
creases inactivation variable h. Since τm(V ) is relatively small, variable m is relatively
fast. Fast activation of Na+ conductance drives V toward ENa, resulting in further
depolarization and further activation of gNa. This positive feedback loop, depicted in
Fig.2.16, results in the upstroke of V . While V moves toward ENa, the slower gating
variables catch up. Variable h → 0, causing inactivation of the Na+ current, and vari-
able n → 1, causing slow activation of the outward K+ current. The latter and the
leak current repolarize the membrane potential toward Vrest.

When V is near Vrest, the voltage-sensitive time constants τn(V ) and τh(V ) are
relatively large, as one can see in Fig.2.13. Therefore, recovery of variables n and h is
slow. In particular, the outward K+ current continues to be activated (n is large) even
after the action potential downstroke, thereby causing V to go below Vrest toward EK

– a phenomenon known as afterhyperpolarization.

In addition, the Na+ current continues to be inactivated (h is small) and not avail-
able for any regenerative function. The Hodgkin-Huxley system cannot generate an-
other action potential during this absolute refractory period. While the current deinac-
tivates, the system becomes able to generate an action potential, provided the stimulus
is relatively strong (relative refractory period).

To study the relationship between these refractory periods, we stimulate the Hodgkin-
Huxley model with 1-ms pulses of current having various amplitudes and latencies. The
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Figure 2.17: Refractory periods in the Hodgkin-Huxley model with I = 3.

minimal amplitude of the stimulation needed to evoke a second spike in the model is
depicted in Fig.2.17 (bottom). Notice that around 14 ms after the first spike, the model
is hyper-excitable, that is, the stimulation amplitude is less than the baseline ampli-
tude Ap ≈ 6 needed to evoke a spike from the resting state. This occurs because the
Hodgkin-Huxley model exhibits damped oscillations of membrane potential (discussed
in chapter 7).

2.3.3 Propagation of the Action Potentials

The space-clamped Hodgkin-Huxley model of the squid giant axon describes non-
propagating action potentials since V (t) does not depend on the location, x, along
the axon. To describe propagation of action potentials (pulses) along the axon hav-
ing potential V (x, t), radius a (cm), and intracellular resistivity R (Ω·cm), the partial
derivative Vxx is added to the voltage equation to account for axial currents along the
membrane. The resulting nonlinear parabolic partial differential equation

C Vt =
a

2R
Vxx + I − IK − INa − IL

is often referred to as the Hodgkin-Huxley cable or propagating equation. Its important
type of solution, a traveling pulse, is depicted in Fig.2.18. Studying this equation goes
beyond the scope of this book; the reader can consult Keener and Sneyd (1998) and
references therein.
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Figure 2.18: Traveling pulse solution of the Hodgkin-Huxley cable equation at four
successive moments.

2.3.4 Dendritic Compartments

Modifications of the Hodgkin-Huxley model, often called Hodgkin-Huxley-type models
or conductance-based models, can describe the dynamics of spike-generation of many,
if not all, neurons recorded in nature. However, there is more to the computational
property of neurons than just the spike-generation mechanism. Many neurons have
an extensive dendritic tree that can sample the synaptic input arriving at different
locations and integrate it over space and time.

Many dendrites have voltage-gated currents, so the synaptic integration is non-
linear, sometimes resulting in dendritic spikes that can propagate forward to the soma
of the neuron or backward to distant dendritic locations. Dendritic spikes are prominent
in intrinsically bursting (IB) and chattering (CH) neocortical neurons considered in
chapter 8. In that chapter we also model regular spiking (RS) pyramidal neurons,
the most numerous class of neurons in mammalian neocortex, and show that their
spike-generation mechanism is one of the simplest. The computation complexity of RS
neurons must be hidden, then, in the arbors of their dendritic trees.

It is not feasible at present to study the dynamics of membrane potential in dendritic
trees either analytically or geometrically (i.e., without resort to computer simulations),
unless dendrites are assumed to be passive (linear) and semi-infinite, and to satisfy
Rall’s branching law (Rall 1959). Much of the insight can be obtained via simulations,
which typically replace the continuous dendritic structure in Fig.2.19a with a network
of discrete compartments in Fig.2.19b. Dynamics of each compartment is simulated by
a Hodgkin-Huxley-type model, and the compartments are coupled via conductances.
For example, if Vs and Vd denote the membrane potential at the soma and in the
dendritic tree, respectively, as in Fig.2.19c, then

CsV̇s = −Is(Vs, t) + gs(Vd − Vs) , and CdV̇d = −Id(Vd, t) + gd(Vs − Vd) ,
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Figure 2.19: A dendritic tree of a neuron (a) is replaced by a network of compart-
ments (b), each modeled by a Hodgkin-Huxley-type model. The two-compartment
neuronal model (c) may be equivalent to two neurons coupled via gap junctions (elec-
trical synapse) (d).

where each I(V, t) represents the sum of all voltage-, Ca2+-, and time-dependent cur-
rents in the compartment, and gs and gd are the coupling conductances that depend
on the relative sizes of dendritic and somatic compartments. One can obtain many
spiking and bursting patterns by changing the conductances and keeping all the other
parameters fixed (Pinsky and Rinzel 1994, Mainen and Sejnowski 1996).

Once we understand how to couple two compartments, we can do it for hundreds or
thousands of compartments. GENESIS and NEURON simulation environments could
be useful here, especially since they contain databases of dendritic trees reconstructed
from real neurons.

Interestingly, the somatic-dendritic pair in Fig.2.19c is equivalent to a pair of neu-
rons in Fig.2.19d coupled via gap-junctions. These are electrical contacts that allow
ions and small molecules to pass freely between the cells. Gap junctions are often
called electrical synapses, because they allow potentials to be conducted directly from
one neuron to another.

Computational study of multi-compartment dendritic processing is outside of the
scope of this book. We consider multi-compartment models of cortical pyramidal neu-
rons in chapter 8 and gap-junction coupled neurons in chapter 10 (which is on the
author’s webpage).

2.3.5 Summary of Voltage-Gated Currents

Throughout this book we model kinetics of various voltage-sensitive currents using the
Hodgkin-Huxley gate model

I = ḡ mahb(V − E)
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Figure 2.20: Boltzmann (2.11) and Gaussian (2.12) functions and geometrical inter-
pretations of their parameters.

where
I - current , (μA/cm2),
V - membrane voltage, (mV),
E - reverse potential, (mV),
ḡ - maximal conductance, (mS/cm2),
m - probability of activation gate to be open,
h - probability of inactivation gate to be open,
a - the number of activation gates per channel,
b - the number of inactivation gates per channel.

The gating variables m and n satisfy linear first-order differential equations (2.9) and
(2.10), respectively. We approximate the steady-state activation curve m∞(V ) by the
Boltzmann function depicted in Fig.2.20,

m∞(V ) =
1

1 + exp {(V1/2 − V )/k} (2.11)

The parameter V1/2 satisfies m∞(V1/2) = 0.5, and k is the slope factor (negative for the
inactivation curve h∞(V )). Smaller values of |k| result in steeper m∞(V ).

The voltage-sensitive time constant τ(V ) can be approximated by the Gaussian
function

τ(V ) = Cbase + Camp exp
−(Vmax − V )2

σ2
, (2.12)

see Fig.2.20. The graph of the function is above Cbase with amplitude Camp. The
maximal value is achieved at Vmax. The parameter σ measures the characteristic width
of the graph, that is, τ(Vmax ± σ) = Cbase + Camp/e. The Gaussian description is often
not adequate, so we replace it with other functions whenever appropriate.

Below is the summary of voltage-gated currents whose kinetics were measured ex-
perimentally. The division into persistent and transient is somewhat artificial, since
most “persistent” currents can still inactivate after seconds of prolonged depolarization.
Hyperpolarization-activated currents, such as the h-current or K+ inwardly rectifying
current, are mathematically equivalent to currents that are always activated, but can
be inactivated by depolarization. To avoid possible confusion, we mark these currents
“opened by hyperpolarization”.
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Parameters (Fig.2.20)
Na+ currents Eq. (2.11) Eq. (2.12)

V1/2 k Vmax σ Camp Cbase

Fast transient 1 INa,t = ḡ m3h(V − ENa)

activation −40 15 −38 30 0.46 0.04
inactivation −62 −7 −67 20 7.4 1.2

Fast transient 2 INa,t = ḡ m∞(V )h(V − ENa)

activation −30 5.5 − − − −
inactivation −70 −5.8 τh(V ) = 3 exp((−40 − V )/33)

Fast transient 3 INa,t = ḡ m∞(V )h(V − ENa)

activation −28 6.7 − − − −
inactivation −66 −6 τh(V ) = 4 exp((−30 − V )/29)

Fast persistent 4,a INa,p = ḡ m∞(V )h(V − ENa)

activation −50 4 − − − −
inactivation −49 −10 −66 35 4.5 sec 2 sec

Fast persistent 5,a INa,p = ḡ m∞(V )(0.14 + 0.86h)(V − ENa)

activation −50 6 − − − −
inactivation −56 −7 τh(V ) = 63.2 + 25 exp(−V/25.5)

Fast persistent 2 INa,p = ḡ m(V − ENa)

activation −54 9 − − − 0.8
Fast persistent 6 INa,p = ḡ m(V − ENa)

activation −42 4 − − − 0.8

1. Squid giant axon (Hodgkin and Huxley 1952); see exercise 4.

2. Thalamocortical neurons in rats (Parri and Crunelli 1999).

3. Thalamocortical neurons in cats (Parri and Crunelli 1999).

4. Layer-II principal neurons in entorhinal cortex (Magistretti and Alonso 1999).

5. Large dorsal root ganglion neurons in rats (Baker and Bostock 1997, 1998).

6. Purkinje cells (Kay et al. 1998).

a Very slow inactivation.
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Parameters (Fig.2.20)
K+ currents Eq. (2.11) Eq. (2.12)

V1/2 k Vmax σ Camp Cbase

Delayed rectifier 1 IK = ḡ n4(V − EK)

activation −53 15 −79 50 4.7 1.1

Delayed rectifier 2,4 IK = ḡ mh(V − EK)

activation −3 10 −50 30 47 5
inactivation −51 −12 −50 50 1000 360

M current 3 IK(M) = ḡ m(V − EK)

activation −44 8 −50 25 320 20

Transient 4 IA = ḡ mh(V − EK)

activation −3 20 −71 60 0.92 0.34
inactivation −66 −10 −73 23 50 8

Transient 5 IA = ḡ mh(V − EK)

activation −26 20 − − − −
inactivation −72 −9.6 − − − 15.5

Transient 6 IA = ḡ m4h (V − EK)
Fast component (60% of total conductance)

activation −60 8.5 −58 25 2 0.37
inactivation −78 −6 −78 25 45 19

Slow component (40% of total conductance)
activation −36 20 −58 25 2 0.37
inactivation −78 −6 −78 25 45 19

τh(V ) = 60 when V > −73

Inward rectifier 7 IKir = ḡ h∞(V )(V − EK)
(opened by hyperpolarization )

inactivation −80 −12 − − − < 1

1. Squid giant axon (Hodgkin and Huxley 1952); see exercise 4.
2. Neocortical pyramidal neurons (Bekkers 2000).
3. Rodent neuroblastoma-glioma hybrid cells (Robbins et al. 1992).
4. Neocortical pyramidal neurons (Korngreen and Sakmann 2000).
5. Hippocampal mossy fiber boutons (Geiger and Jonas 2000).
6. Thalamic relay neurons (Huguenard and McCormick 1992).
7. Horizontal cells in catfish retina (Dong and Werblin 1995); AP cell of leech (Wessel et al.

1999); rat locus coeruleus neurons (Williams et al. 1988, V1/2 = EK).
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Parameters (Fig.2.20)
Cation currents Eq. (2.11) Eq. (2.12)

V1/2 k Vmax σ Camp Cbase

Ih current 1 Ih = ḡ h (V − Eh), Eh = −43 mV
(opened by hyperpolarization )

inactivation −75 −5.5 −75 15 1000 100

Ih current 2 Ih = ḡ h (V − Eh), Eh = −1 mV
inact. (soma) −82 −9 −75 20 50 10
inact. (dendrite) −90 −8.5 −75 20 40 10

Ih current 3 Ih = ḡ h (V − Eh), Eh = −21 mV
fast inact. (65%) −67 −12 −75 30 50 20
slow inact. (35%) −58 −9 −65 30 300 100

1. Thalamic relay neurons (McCormick and Pape 1990; Huguenard and McCormick 1992).

2. Hippocampal pyramidal neurons in CA1 (Magee 1998).

3. Entorhinal cortex layer II neurons (Dickson et al. 2000).

half-voltage, V1/2 (mV)

tim
e 

co
ns

ta
nt

, (
m

s)

1

10

100

1000

slow

fast

-100 0-50
low-threshold high-threshold

IKir
INap

INat

Ih

IK

IA

INat
INat

INat

Ih

Ih Ih

IAIA

IAIA

IK

INap

inactivation

activationvoltage-gated currents

IK(M)

IK(M)

IK(M)
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Figure 2.22: Alan Hodgkin (right) and Andrew Huxley (left) in their Plymouth Marine
Lab in 1949. (Photo provided by National Marine Biological Library, Plymouth, UK).

Review of Important Concepts

• Electrical signals in neurons are carried by Na+, Ca2+, K+, and Cl−

ions, which move through membrane channels according to their
electrochemical gradients.

• The membrane potential V is determined by the membrane conduc-
tances gi and corresponding reversal potentials Ei:

C V̇ = I −
∑

i

gi · (V − Ei) .

• Neurons are excitable because the conductances depend on the mem-
brane potential and time.

• The most accepted description of kinetics of voltage-sensitive con-
ductances is the Hodgkin-Huxley gate model.

• Voltage-gated activation of inward Na+ or Ca2+ current depolarizes
(increases) the membrane potential.

• Voltage-gated activation of outward K+ or Cl− current hyperpolar-
izes (decreases) the membrane potential.

• An action potential or spike is a brief regenerative depolarization of
the membrane potential followed by its repolarization and possibly
hyperpolarization, as in Fig.2.16.



50 Electrophysiology of Neurons

Bibliographical Notes

Our summary of membrane electrophysiology is limited: we present only those con-
cepts that are necessary to understand the Hodgkin-Huxley description of generation
of action potentials. We have omitted such important topics as the Goldman-Hodgkin-
Katz equation, cable theory, dendritic and synaptic function, although some of those
will be introduced later in the book.

The standard textbook on membrane electrophysiology is the second edition of
Ion Channels of Excitable Membranes by B. Hille (2001). An excellent introductory
textbook with an emphasis on the quantitative approach is Foundations of Cellular
Neurophysiology by D. Johnston and S. Wu (1995). A detailed introduction to math-
ematical aspects of cellular biophysics can be found in Mathematical Physiology by
J. Keener and J. Sneyd (1998). The latter two books complement rather than re-
peat each other. Biophysics of Computation by Koch (1999) and chapters 5 and 6 of
Theoretical Neuroscience by Dayan and Abbott (2001) provide a good introduction to
biophysics of excitable membranes.

The first book devoted exclusively to dendrites is Dendrites by Stuart et al. (1999).
It emphasizes the active nature of dendritic dynamics. Arshavsky et al. (1971; Russian
language edition, 1969) make the first, and probably still the best, theoretical attempt
to understand the neurocomputational properties of branching dendritic trees endowed
with voltage-gated channels and capable of generating action potentials. Had they
published their results in the 1990s, they would have been considered classics in the
field. Unfortunately, the computational neuroscience community of the 1970s was
not ready to accept the “heretic” idea that dendrites can fire spikes, that spikes can
propagate backward and forward along the dendritic tree, that EPSPs can be scaled-up
with distance, that individual dendritic branches can perform coincidence detection and
branching points can perform nonlinear summation, and that different and independent
computations can be carried out at different parts of the neuronal dendritic tree. We
touch on some of these issues in chapter 8.

Exercises

1. Determine the Nernst equilibrium potentials for the membrane of the squid giant
axon using the following data:

Inside (mM) Outside (mM)
K+ 430 20
Na+ 50 440
Cl− 65 560

and T = 20◦C.

2. Show that a nonselective cation current

I = ḡNa p (V − ENa) + ḡK p (V − EK)
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can be written in the form (2.7) with

ḡ = ḡNa + ḡK and E =
ḡNaENa + ḡKEK

ḡNa + ḡK

.

3. Show that applying a DC current I in the neuronal model

CV̇ = I − gL(V − EL) − Iother(V )

is equivalent to changing the leak reverse potential EL.

4. Steady-state (in)activation curves and voltage-sensitive time constants can be
approximated by the Boltzmann (2.11) and Gaussian (2.12) functions, respec-
tively, depicted in Fig.2.20. Explain the meaning of the parameters V1/2, k,
Cbase, Camp, Vmax, and σ and find their values that provide satisfactory fit near
the rest state V = 0 for the Hodgkin-Huxley functions depicted in Fig.2.13.

5. (Willms et al. 1999) Consider the curve mp
∞(V ), where m∞(V ) is the Boltzmann

function with parameters V1/2 and k, and p > 1. This curve can be approximated

by another Boltzmann function with some parameters Ṽ1/2 and k̃ (and p = 1).

Find the formulas that relate Ṽ1/2 and k̃ to V1/2, k, and p.

6. (Willms et al. 1999) Write a MATLAB program that determines activation
and inactivation parameters via a simultaneous fitting of current traces from a
voltage-clamp experiment similar to the one in Fig.2.23. Assume that the values
of the voltage pairs – e.g., −60,−10;−100, 0 (mV) – are in the file v.dat. The
values of the current (circles in Fig.2.23) are in the file current.dat, and the
sampling times – e.g., 0, 0.25, 0.5, 1, 1.5, 2, 3, 5 (ms) – are in the file times.dat.

7. Modify the MATLAB program from exercise 6 to handle multi-step (Fig.2.24)
and ramp protocols.

8. [M.S.] Find the best sequence of step potentials that can determine activa-
tion and inactivation parameters (a) in the shortest time, (b) with the highest
precision.
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+50 mV

-10 mV 10 ms

-100 mV
-80 mV
-60 mV
-40 mV
-20 mV Figure 2.24: Multiple voltage steps are of-

ten needed to determine time constants of
inactivation; see exercise 7.

9. [M.S.] Modify the MATLAB program from exercise 6 to handle multiple cur-
rents.

10. [M.S.] Add a PDE solver to the MATLAB program from exercise 6 to simulate
poor space and voltage clamp conditions.

11. [Ph.D.] Introduce numerical optimization into the dynamic clamp protocol to
analyze experimentally in real time the (in)activation parameters of membrane
currents.

12. [Ph.D.] Use new classification of families of channels (Kv3,1, Nav1.2, etc.; see
Hille 2001) to determine the kinetics of each subgroup, and provide a complete
table similar to those in section 2.3.5.


