
2. Discrete Population Models
for a Single Species

2.1 Introduction: Simple Models

Differential equation models, whether ordinary, delay, partial or stochastic, imply a
continuous overlap of generations. Many species have no overlap whatsoever between
successive generations and so population growth is in discrete steps. For primitive or-
ganisms these can be quite short in which case a continuous (in time) model may be a
reasonable approximation. However, depending on the species the step lengths can vary
widely. A year is common. With fruit fly emergence from pupae it is a day, for cells it
can be a number of hours while for bacteria and viruses it can be considerably less. In
the models we discuss in this chapter and later in Chapter 5 we have scaled the time-step
to be 1. Models must thus relate the population at time t + 1, denoted by Nt+1, in terms
of the population Nt at time t . This leads us to study difference equations, or discrete
models, of the form

Nt+1 = Nt F(Nt ) = f (Nt ), (2.1)

where f (Nt ) is in general a nonlinear function of Nt . The first form is often used to
emphasise the existence of a zero steady state. Such equations are usually impossible to
solve analytically but again we can extract a considerable amount of information about
the population dynamics without an analytical solution. The mathematics of difference
equations is now being studied in depth and applied in diverse fields: it is a fascinating
subject having given rise to some totally unexpected phenomena some of which we
discuss later. Difference equation models are also proving of use in a surprisingly wide
spectrum of biomedical areas such as cancer growth (see, for example, the article by
Cross and Cotton 1994), aging (see, for example, the article by Lipsitz and Goldberger
1992), cell proliferation (see, for example, the article by Hall and Levinson 1990) and
genetics (see, for example, the chapter on inheritance in the book by Hoppensteadtand
Peskin 1992 and the book by Roughgarden 1996.) It has recently been shown to be of
astonishing use in dynamic modelling of marital interaction and divorce prediction; we
discuss this application in Chapter 5. The largest use to date is probably in ecology; the
book by Hassell (1978) gives numerous examples, see also the more recent excellent
book by Kot (2001).

From a practical point of view, if we know the form of f (Nt ) it is a straightforward
matter to evaluate Nt+1 and subsequent generations by simply using (2.1) recursively.
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Of course, whatever the form of f (Nt ), we are only interested in nonnegative popula-
tions.

The skill in modelling a specific population’s growth dynamics lies in determining
the appropriate form of f (Nt ) to reflect known observations or facts about the species
in question. To do this with any confidence we must understand the major effects on the
solutions of changes in the form of f (Nt ) and its parameters, and also what solutions
of (2.1) look like for a few specimen examples of practical interest. The mathematical
problem is a mapping one, namely, that of finding the orbits, or trajectories, of nonlinear
maps given a starting value N0 > 0. It should be noted here that there is no simple con-
nection between difference equation models and what might appear to be the continuous
differential equation analogue, even though a finite difference approximation results in
a discrete equation. This becomes clear below.

Suppose the function F(Nt ) = r > 0; that is, the population one step later is simply
proportional to the current population. Then from (2.1),

Nt+1 = r Nt ⇒ Nt = r t N0. (2.2)

So the population grows or decays geometrically according to whether r > 1 or r < 1
respectively; here r is the net reproductive rate. This particularly simple model is not
very realistic for most populations nor for long times but, even so, it has been used with
some justification for the early stages of growth of certain bacteria. It is the discrete
version of Malthus’ model in Chapter 1. A slight modification to bring in crowding
effects could be

Nt+1 = r NS, NS = N 1−b
t , b constant,

where NS is the population that survives to breed. There must be restrictions on b of
course, so that NS ≤ Nt otherwise those surviving to breed would be more than the
population of which they form a part.

Fibonacci Sequence

Leonardo of Pisa, who was only given the nickname Fibonacci in the 18th century, in
his arithmetic book of 1202 set a modelling exercise involving an hypothetical growing
rabbit population. It consists of starting at the beginning of the breeding season with
a pair of immature rabbits, male and female, which after one reproductive season pro-
duce two pairs of male and female immature rabbits after which the parents then stop
reproducing. Their offspring pairs then do exactly the same and so on. The question is
to determine the number of pairs of rabbits at each reproductive period. If we denote the
number of pairs of (male and female) rabbits by Nt then normalising the reproductive
period to 1 we have at the t th reproductive stage

Nt+1 = Nt + Nt−1, t = 2, 3, . . . . (2.3)

This gives, with N0 = 1, what is known as the Fibonacci sequence, namely

1, 1, 2, 3, 5, 8, 13, . . . .
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Each term in the sequence is simply the sum of the previous two. Equation (2.3) is a
linear difference equation which we can solve by looking for solutions in the form

Nt ∝ λt

which on substituting into (2.3) gives the equation for the λ as solutions of

λ2 − λ − 1 ⇒ λ1,2 = 1
2

(
1 ±

√
5
)

.

So, with N0 = 1, N1 = 1 the solution of (2.3) is

Nt = 1
2
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(2.4)

For large t , since λ1 > λ2,

Nt ≈ 1
2

(
1 + 1√

5

)
λt

1.

Equation (2.3) is a renewal equation. We can intuitively see age structure in this
model by considering age to reproduction and that after it there is no reproduction. This
approach gives rise to renewal matrices and Leslie matrices which include age structure
(see, for example, the book edited by Caswell 1989).

If we take the ratio of successive Fibonacci numbers we have, for t large, Nt/Nt+1
≈ (

√
5 − 1)/2. This is the so-called golden mean or golden number. In classical paint-

ings, for example, it is the number to strive for in the ratio of say, sky to land in a
landscape.

This sequence and the limiting number above occur in a surprising number of
places. Pine cones, sunflower heads, daisy florets, angles between successive branch-
ing in many plants and many more. On a sunflower head, it is possible to see sets of
intertwined spirals emanating from the centre (you can see them on pine cones starting
at the base). It turns out that the number of spirals varies but are always a number in the
Fibonacci sequence.

Figure 2.1 illustrates two examples of these naturally occurring intertwined loga-
rithmic spirals. For example, in Figure 2.1(b) each scale belongs to both a clockwise
and anticlockwise spiral: a careful counting gives 8 clockwise spirals and 13 anticlock-
wise ones, which are consecutive numbers in the Fibonacci series. On the daisy head
there are 21 clockwise and 34 anticlockwise spirals, again consecutive numbers in the
Fibonacci series.

In the case of branching in phyllotaxis, if you project the branching of many plants
and trees onto the plane the angle between successive branches is essentially constant,
close to 137.5◦. To relate this to the Fibonacci series, if we multiply 360◦ by the limiting
number of the ratio of Fibonacci numbers above, (

√
5 − 1)/2, we get 222.5◦. Since this

is more than 180◦ we should subtract 222.5◦ from 360◦ which gives 137.5◦, which is
known as the Fibonacci angle.
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(a)

(b)
Figure 2.1. Examples of sets of intertwining spirals which occur on (a) the floret of a daisy, and (b) the
pattern of scales on a pine cone. Each element is part of a clockwise and anticlockwise spiral. (Photographs
by Dr. Scott Camazine and reproduced with permission)

There have been several attempts at modelling the patterning process in plant mor-
phology to generate the Fibonacci angle between successive branches and the Fibonacci
sequence for the number of spirals on sunflower heads, pine cones, and so on but to date
the problem is still unsolved. The attempts range from manipulating a reaction diffu-
sion mechanism (for example, Thornley 1976) to looking at algebraic relations between
permutations of the first n natural numbers with each number corresponding to the ini-
tiation order of a given leaf (Kunz and Rothen 1992) to experiments involving magnetic
droplets in a magnetic field (Douady and Couder 1992). Later in the book we discuss
in considerable detail various possible mechanisms for generating spatial patterns, in-
cluding reaction diffusion systems. I firmly believe that the process here is mechanistic
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and not genetic. The work of Douady and Couder (1992, 1993a, 1993b), although of a
physical rather than a biological nature, lends support to this belief.

The work of Douady and Couder (1992) is clever and particularly interesting and
illuminating even though it is a physical as opposed to a biological process involved.
They considered the sequential appearance of the primordia in branching phyllotaxis to
form at the growing apex and at equal time intervals to move out onto a circle around
the growing tip. They considered these primordia to repel each other as they move out,
consequently maximising the distance between them. In this way they self-organise
themselves highly efficiently in a regular spatial pattern. If this is the case, they argued,
then an experiment which mimics this scenario should give a distribution of elements,
the angle between which should be the Fibonacci angle. They took a circular dish of
8 cm diameter, filled it with silicone oil and put it in a vertical magnetic field with
the field increasing towards the dish perimeter. Then, at equal intervals, they dropped
small amounts of a ferromagnetic fluid onto the centre of the dish onto a small truncated
cone (to simulate the plant apex). The drops were then polarised by the magnetic field.
Because of the polarisation the drops formed small magnetic dipoles which repelled
each other and, because of the gradient in the magnetic field, moved outwards towards
the perimeter and ended up being regularly distributed. Because of the interaction with
the previous drops, new drops fell from the cone in the direction of minimum energy. To
prevent accumulation of drops at the periphery, they ultimately fell into a ditch there.
The time between the drops of magnetic fluid affected the spirals generated and the
final angle between the drops when they reached the perimeter: in a surprising number
of runs the angle was essentially the Fibonacci angle and the number of spirals a number
in the Fibonacci series. They then confirmed the results with computer simulations.

Generally, because of crowding and self-regulation, we expect f (Nt ) in (2.1) to
have some maximum, at Nm say, as a function of Nt with f decreasing for Nt > Nm ;
Figure 2.2 illustrates a typical form. A variety of f (Nt ) has been used in practical
situations such as those described above: see, for example, the book by Kot (2001) for
some specific practical forms in ecology. One such model, sometimes referred to as the

Nt+1

0
Nm

f (Nt )

Nt

Figure 2.2. Typical growth form in the model Nt+1 = f (Nt ).
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Verhulst process, is

Nt+1 = r Nt

(
1 − Nt

K

)
, r > 0, K > 0, (2.5)

which might appear to be a kind of discrete analogue of the continuous logistic growth
model but is not all: the steady state is not N = K . As we shall show, however, the
solutions and their dependence on the parameter r are very different. An obvious draw-
back of this specific model is that if Nt > K then Nt+1 < 0. A more appropriate way
of deriving it (see also the legend in Figure 2.11) from the continuous Verhulst equation
is to replace the derivative d N/dt with a difference form with time step 1 to obtain

N (t + 1) − N (t) = r N (t)
[

1 − N (t)
K

]
⇒ N (t + 1) =

[
1 + r − r

K
N (t)

]
. (2.6)

Now rescaling with N (t) = ((1 + r)/r)K x(t) and setting 1 + r = r ′ the last
equation becomes the same form as (2.2), namely,

x(t + 1) = r ′x(t)[1 − x(t)]. (2.7)

A more realistic model should be such that for large Nt there should be a reduction
in the growth rate but Nt+1 should remain nonnegative; the qualitative form for f (Nt ) in
Figure 2.2 is an example. One such frequently used model, known as the Ricker curve,
after Ricker (1954), is

Nt+1 = Nt exp
[

r
(

1 − Nt

K

)]
, r > 0, K > 0 (2.8)

which we can think of as a modification of (2.2) where there is a mortality factor
exp (−r Nt/K ) which is more severe the larger Nt . Here Nt > 0 for all t if N0 > 0.

Since t increases by discrete steps there is, in a sense, an inherent delay in the
population to register change. Thus there is a certain heuristic basis for relating these
difference equations to delay differential equations discussed in Chapter 1, which, de-
pending on the length of the delay, could have oscillatory solutions. Since we scaled the
time-step to be 1 in the general form (2.1) we should expect the other parameters to be
the controlling factors as to whether or not solutions are periodic. With (2.5) and (2.8)
the determining parameter is r , since K can be scaled out by writing Nt for Nt/K .

2.2 Cobwebbing: A Graphical Procedure of Solution

We can elicit a considerable amount of information about the population growth be-
haviour by simple graphical means. Consider (2.1) with f as in Figure 2.2. The steady
states are solutions N ∗ of

N∗ = f (N∗) = N∗F(N∗) ⇒ N∗ = 0 or F(N ∗) = 1. (2.9)
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Figure 2.3. (a) Graphical determination of the steady state and demonstration of how Nt approaches it. (b)
Time evolution of the population growth using (a). We use a continuous curve joining up the populations at
different time-steps for visual clarity; strictly the population changes abruptly at each time-step.

Generally, we use only the first form in (2.9); the second is mainly used to empha-
sise the fact that N ∗ = 0 is always a steady state. Graphically the steady states are
intersections of the curve Nt+1 = f (Nt ) and the straight line Nt+1 = Nt as shown
in Figure 2.3(a) for a case where the maximum of the curve Nt+1 = f (Nt ), at Nm
say, has Nm > N∗. The dynamic evolution of the solution Nt of (2.1) can be obtained
graphically as follows. Suppose we start at N0 in Figure 2.3(a). Then N1 is given by
simply moving along the Nt+1 axis until we intersect with the curve Nt+1 = f (Nt ),
which gives N1 = f (N0). The line Nt+1 = Nt is now used to start again with N1 in
place of N0. We then get N2 by proceeding as before and then N3, N4 and so on: the
arrows show the path sequence. The path is simply a series of reflections in the line
Nt+1 = Nt . We see that Nt → N∗ as t → ∞ and it does so monotonically as illus-
trated in Figure 2.3(b). If we started at N ′

0 > N∗ in Figure 2.3(a), again Nt → N∗

and monotonically after the first step. If we start close enough to the steady state N ∗

the approach to it is monotonic as long as the curve Nt+1 = f (Nt ) crosses Nt+1 = Nt
appropriately; here that means

0 <

[
d f (Nt )

d Nt

]

Nt =N∗
= f ′(N∗) < 1. (2.10)

The value f ′(N∗), where the prime denotes the derivative with respect to Nt , is an
important parameter as we shall show; it is the eigenvalue of the system at the steady
state N∗. Since any small perturbation about N ∗ simply decays to zero, N ∗ is a linearly
stable equilibrium state.
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Suppose now f (Nt ) is such that the equilibrium N ∗ > Nm as in Figure 2.4. The
dynamic behaviour of the population depends critically on the geometry of the intersec-
tion of the curves at N ∗ as seen from the inset enlargements in Figures 2.4(a), (b) and
(c): these respectively have −1 < f ′(N∗) < 0, f ′(N∗) = −1 and f ′(N∗) < −1. The
solution Nt is oscillatory in the vicinity of N ∗. If the oscillations decrease in amplitude
and Nt → N∗ then N∗ is stable as in Figure 2.4(a), while it is unstable if the oscilla-
tions grow as in Figure 2.4(c). The case Figure 2.4(b) exhibits oscillations which are
periodic and suggest that periodic solutions to the equation Nt+1 = f (Nt ) are possible.
The steady state is strictly unstable if a small perturbation from N ∗ does not tend to
zero. The population’s dynamic behaviour for each of the three cases in Figure 2.4 is
illustrated in Figure 2.5.

The parameter λ = f ′(N∗), the eigenvalue of the equilibrium N ∗ of Nt+1 =
f (Nt ), is crucial in determining the local behaviour about the steady state. The cases in
which the behaviour is clear and decisive are when 0 < λ < 1 as in Figure 2.3(a) and
−1 < λ < 0 and λ < −1 as in Figures 2.4(b) and (c) respectively. The equilibrium is
stable if −1 < λ < 1 and is said to be an attracting equilibrium. The critical bifurcation
values λ = ±1 are where the solution Nt changes its behavioural character. The case
λ = 1 is where the curve Nt+1 = f (Nt ) is tangent to Nt+1 = Nt at the steady state
since f ′(N∗) = 1, and is called a tangent bifurcation for obvious reasons. The case

Figure 2.4. Local behaviour of Nt near a steady state where f ′(N∗) < 0. The enlargements show the cases
where (a) −1 < f ′(N∗) < 0, N∗ is stable with decreasing oscillations for any small perturbation from
the steady state. (b) f ′(N∗) = −1, N∗ is neutrally stable. (c) f ′(N∗) < −1, N∗ is unstable with growing
oscillations.
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Figure 2.5. Local behaviour of small perturbations about the equilibrium population N∗ with (a), (b), and
(c) corresponding to the situations illustrated in Figures 2.3 (a), (b) and (c) respectively: (a) is the stable case
and (c) the unstable case.

λ = −1 for reasons that will become clear used to be called a pitchfork bifurcation but
is now referred to as a period-doubling bifurcation.

The reason for the colourful description ‘cobwebbing’for this graphical procedure
is obvious from Figures 2.3, 2.4 and 2.6. It is an exceedingly useful procedure for sug-
gesting the dynamic behaviour of the population Nt for single equations of the type
(2.1). Although we have mainly concentrated on the local behaviour near an equilib-
rium it also gives the quantitative global behaviour. If the steady state is unstable, it
can presage the peculiar behaviour that solutions of such equations can exhibit. As an
example suppose λ = f ′(N∗) < −1; that is, the local behaviour near the unstable N ∗

is as in Figure 2.4(c). If we now cobweb such a case we have a situation such as shown
in Figure 2.6. The solution trajectory cannot tend to N ∗. On the other hand, the popu-
lation must be bounded by Nmax in Figure 2.6(a) since there is no way we can generate
a larger Nt although we could start with one. Thus the solution is globally bounded but
does not tend to a steady state. In fact it seems to wander about in a seemingly random

Figure 2.6. (a) Cobweb for Nt+1 = f (Nt ) where the eigenvalue λ = f ′(N∗) < −1. (b) The corresponding
population behaviour as a function of time.
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way if we look at it as a function of time in Figure 2.6(b). Solutions which do this are
called chaotic.

With the different kinds of solutions of models like (2.1), as indicated by the cob-
web procedure and the sensitivity hinted at by the special critical values of the eigen-
value λ, we must now investigate such equations analytically. The results suggested by
the graphical approach can be very helpful in the analysis.

2.3 Discrete Logistic-Type Model: Chaos

As a concrete example consider the nonlinear logistic-type model

ut+1 = rut (1 − ut ), r > 0, (2.11)

where we assume 0 < u0 < 1 and we are interested in solutions ut ≥ 0. From the
relation to the continuous differential equation logistic model the ‘r ’ here is strictly
‘1 + r ’. The steady states and corresponding eigenvalues λ are

u∗ = 0, λ = f ′(0) = r,

u∗ = r − 1
r

, λ = f ′(u∗) = 2 − r.
(2.12)

As r increases from zero but with 0 < r < 1 the only realistic, that is, non-
negative, equilibrium is u∗ = 0 which is stable since 0 < λ < 1. It is also clear from
a cobwebbing of (2.11) with 0 < r < 1 or analytically from equation (2.11) on noting
that u1 < u0 < 1 and ut+1 < ut for all t , which implies that ut → 0 as t → ∞.

The first bifurcation comes when r = 1 since u∗ = 0 becomes unstable since its
eigenvalue λ > 1 for r > 1, while the positive steady state u∗ = (r − 1)/r > 0, for
which −1 < λ < 1 for 1 < r < 3, is stable for this range of r . The second bifurcation
is at r = 3 where λ = −1. Here f ′(u∗) = −1, and so, locally near u∗, we have the
situation in Figure 2.4(b) which exhibits a periodic solution.

To see what is happening when r passes through the bifurcation value r = 3, let us
first introduce the following notation for the iterative procedure,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1 = f (u0)

u2 = f ( f (u0)) = f 2(u0)
...

ut = f t (u0)

. (2.13)

With the example (2.11) the first iteration is simply the equation (2.11) while the
second iterate is

ut+2 = f 2(ut ) = r [rut (1 − ut )][1 − rut (1 − ut )]. (2.14)

Figure 2.7(a) illustrates the effect on the first iteration as r varies; the eigenvalue
λ = f ′(u∗) decreases as r increases and λ = −1 when r = 3. We now look at the
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Figure 2.7. (a) First iteration as a function of r for ut+1 = rut (1−ut ): u∗ = (r −1)/r , λ = f ′(u∗) = 2−r.
(b) Sketch of the second iteration ut+2 = f 2(ut ) as a function of ut for r = 3 + ε where 0 < ε ≪ 1. The
dashed line reproduces the first iteration curve of ut+1 as a function of ut ; it passes through B, the unstable
steady state. The curve is symmetric about ut = 1/2.

second iteration (2.14) and ask if it has any equilibria, that is, where ut+2 = ut = u∗
2.

A little algebra shows that u∗
2 satisfies

u∗
2[ru∗

2 − (r − 1)][r2u∗2

2 − r(r + 1)u∗
2 + (r + 1)] = 0 (2.15)

which has solutions

u∗
2 = 0 or u∗

2 = r − 1
r

> 0 if r > 1,

u∗
2 = (r + 1) ± [(r + 1)(r − 3)]1/2

2r
> 0 if r > 3.

(2.16)

We thus see that there are 2 more real steady states of ut+2 = f 2(ut ) with f (ut )

from (2.11) if r > 3. This corresponds to the situation in Figure 2.7(b) where A, B and
C are the positive equilibria u∗

2, with B equal to (r − 1)/r , lying between the two new
solutions for u∗

2 in (2.16) which appear when r > 3.
We can think of (2.14) as a first iteration in a model where the iterative time step

is 2. The eigenvalues λ of the equilibria can be calculated at the points A, B and C .
Clearly λB = f ′(u∗

B) > 1 from Figure 2.7(b) where u∗
B denotes u∗

2 at B and similarly
for A and C . For r just greater than 3, −1 < λA < 1 and −1 < λC < 1 as can be
seen visually or, from (2.14), by evaluating ∂ f 2(ut )/∂ut at u∗

Aand u∗
C given by the last

two solutions in (2.16). Thus the steady states, u∗
A and u∗

C , of the second iteration (2.14)
are stable. What this means is that there is a stable equilibrium of the second iteration
(2.14) and this means that there exists a stable periodic solution of period 2 of equation
(2.11). In other words if we start at A, for example, we come back to it after 2 iterations,
that is u∗

A+2 = f 2(u∗
A) but u∗

A+1 = f (u∗
A) ̸= u∗

A. In fact u∗
A+1 = u∗

C and u∗
C+1 = u∗

A.



2.3 Discrete Logistic-Type Model: Chaos 55

As r continues to increase, the eigenvalues λ at A and C in Figure 2.7(b) pass
through λ = −1 and so these 2-period solutions become unstable. At this stage we look
at the 4th iterate and we find, as might now be expected, that ut+4 as a function of ut will
have four humps as compared with two in Figure 2.7(b) and a 4-cycle periodic solution
appears. Thus as r passes through a series of bifurcation values the character of the
solution ut passes through a series of bifurcations, here in period doublingof the periodic
solutions. The bifurcation situation is illustrated in Figure 2.8(a). These bifurcations
when λ = −1 were originally called pitchfork bifurcations for obvious reasons from
the picture they generate in Figure 2.8(a). However, since it is only a pitchfork from the
point of view of two-cycles it is now called a period-doubling bifurcation. For example,
if 3 < r < r4, where r4 is the bifurcation value to a 4-period solution, then the periodic
solution is between the two u∗ in Figure 2.8(a) which are the intersections of the vertical
line through the r value and the curve of equilibrium states. Figure 2.8(b) is an example
of a 4-cycle periodic solution, that is, r4 < r < r8 with the actual ut values again given
by the 4 intersections of the curve of equilibrium states with the vertical line through
that value of r .

As r increases through successive bifurcations, every even p-periodic solution
branches into a 2p-periodic solution and this happens when r is such that the eigen-
value of the p-periodic solution passes through −1. The distance between bifurcations
in r -space gets smaller and smaller: this is heuristically plausible since higher order it-
erates imply more humps (compare with Figure 2.7(b)) all of which are fitted into the
same interval (0, 1). There is thus a hierarchy of solutions of period 2n for every n, and
associated with each, is a parameter interval in which it is stable. There is a limiting
value rc at which instability sets in for all periodic solutions of period 2n . For r > rc
all the original 2n-cycles are unstable. The behaviour is quite complex. For r > rc
odd cycles begin to appear and a simple 3-cycle eventually appears when r ≈ 3.828
and locally attracting cycles with periods k, 2k, 4k, . . . appear but where now k is odd.
Another stable 4-cycle, for example, shows up when r ≈ 3.96.

This critical parameter value rc in our model (2.11) is when odd period solutions
are just possible. When the third iterate has 3 steady states which are tangent to the line

(b)(a)u∗

1 1

0
1 2 3 r4 r8 4 r

ut

t
Figure 2.8. (a) Stable solutions (schematic) for the logistic model (2.11) as r passes through bifurcation
values. At each bifurcation, the previous state becomes unstable and is represented by the dashed lines. The
sequence of stable solutions has periods 2, 22, 23, . . . . (b) An example (schematic) of a 4-cycle periodic
solution where r4 < r < r8 where r4 and r8 are the bifurcation values for 4-period and 8-period solutions
respectively.
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1

1
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B u∗
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ut+3 = f 3(ut )

ut+3 = ut
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C

Figure 2.9. Schematic third iterate ut+3 = f 3(ut ) for (2.11) at r = rc , the parameter value where the three
steady states A, B and C all have eigenvalue λ = 1. The curve is symmetric about ut = 1/2.

ut+3 = ut , that is, the eigenvalue λ = 1 at these steady states of ut+3 = f 3(ut ), we
have a 3-cycle. This situation is shown schematically in Figure 2.9. For the model (2.11)
the critical r ≈ 3.828.

Sarkovskii (1964) published an important paper on one-dimensional maps, which
has dramatic practical consequences, and is directly related to the situation in Figure 2.9.
He proved, among other things, that if a solution of odd (≥ 3) period exists for a value r3
then aperiodic or chaotic solutions exist for r > r3. Such solutions simply oscillate in an
apparently random manner. The bifurcation here, at r3, is called a tangent bifurcation:
the name is suggestive of the situation illustrated in Figure 2.9. Figure 2.10 illustrates
some solutions for the model equation (2.4) for various r , including chaotic examples
in Figures 2.10(d) and (f). Note the behaviour in Figure 2.10(f), for example: there is
population explosion, crashback and slow recovery.

Sarkovskii’s theorem was further extended by Stefan(1977). Li and Yorke’s (1975)
result, namely, that if a period 3 solution exists then solutions of period n exist for all
n ≥ 1, is a special case of Sarkovskii’s theorem.

Although we have concentrated here on the logistic model (2.11) this kind of
behaviour is typical of difference equation models with the dynamics like (2.1) and
schematically illustrated in Figure 2.2; that is, they all exhibit bifurcations to higher
periodic solutions eventually leading to chaos.

Figures 2.10(d)–(f) illustrate an interesting aspect of the paths to chaos. As r in-
creases from its value giving the aperiodic solution in Figure 2.10(d) we again get pe-
riodic solutions, as in Figure 2.10(e). For larger r , aperiodic solutions again appear as
in Figure 2.10(f). So as r increases beyond where chaos first appears there are windows
of parameter values where the solution behaviour is periodic. There are thus parameter
windows of periodicity interlaced with windows of aperiodicity. Figure 2.11 shows a
typical figure obtained when the iterative map is run after a long time, the order of sev-
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Figure 2.10. Solutions ut of the model system ut+1 = ut exp [r(1 − ut )] for various r . Here the first bifur-
cation to periodicity occurs at r = 2. The larger the parameter r , the larger the amplitude of the oscillatory
solution. (a), (b), and (c) exhibit 2-, 4- and 8-cycle periodic solutions, (d) and (f) chaotic behaviour and (e) a
3-cycle solution.

eral thousand iterations, and then run for many more iterations during which the values
ut were plotted.

Refer now to Figure 2.11 and consider the effect on the solutions of increasing r .
For r2 < r < r4 the solution ut simply oscillates between the two points, A and B,
for example, which are the intersections of a vertical line through the r -value. For
r4 < r < r8, ut exhibits a 4-period solution with the values again given by the in-
tersection of the curves with the vertical line through the r -value as shown. For values
of rc < r < rp the solutions are chaotic. For a small window of r -values greater than r p
the solutions again exhibit regular periodic solutions after which they are again aperi-
odic. The sequence of aperiodicity–periodicity–aperiodicity is repeated. If we now look
at the inset which is an enlargement of the small rectangle, we see the same sequence of
bifurcations repeated in a fractal sense. A brief introduction to fractals is given in Chap-
ter 14, and a short discussion of them in a biological context in Chapter 3, Section 3.9.
The elegant book by Peitgen and Richter (1986) shows a colourful selection of spec-
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Figure 2.11. Long time asymptotic iterates for the discrete equation xt+1 = xt + r xt (1 − xt ) for 1.9 <

r < 3. By a suitable rescaling, (ut = [r/(r + 1)]xt , ‘r ’ = 1 + r), this can be written in the form (2.11).
These are typical of discrete models which exhibit period doubling and eventually chaos and the subsequent
path through chaos. Another example is that used in Figure 2.10; see text for a detailed explanation. The
enlargement of the small window (with a greater magnification in the r -direction than in the xt direction)
shows the fractal nature of the bifurcation sequences. (Reproduced with permission from Peitgen and Richter
1986; some labelling has been added)

tacular figures and fractal sequences which can arise from discrete models, particularly
with two-dimensional models: we discuss a practical application in Chapter 5.

There is increasing interest and a large amount of research going on in chaotic
behaviour related to what we have been discussing, much of it prompted by new and
potential applications in a variety of different fields. In the popular press it is now re-
ferred to as chaos theory or the new(!) nonlinear theory. (There is nothing like a really
immediately recognisable name to get the public’s attention; catastrophe theory and
fractal theory are others.) The interest is not restricted to discrete models of course: it
was first demonstrated by a system of ordinary differential equations—the Lorenz sys-
tem (Lorenz 1963: see Sparrow 1982, 1986 for a review). This research into chaos has
produced many interesting and unexpected results associated with models such as we
have been discussing here, namely, those which exhibit periodic doubling. For example,
if r2, r4, . . . r2n, . . . is the sequence of period doubling bifurcation values, Feigenbaum
(1978) proved that

lim
n→∞

r2(n+1) − r2n

r2(n+2) − r2(n+1)
= δ = 4.66920 . . . .
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He showed that δ is a universal constant; that is, it is the value for the equivalent ratio for
general iterative maps of the form ut+1 = f (ut ), where f (ut ) has a maximum similar
to that in Figure 2.2, and which exhibit period doubling.

A useful, practical and quick way to show the existence of chaos has been given by
Li et al. (1982). They proved that if, for some ut and any f (ut ), an odd integer n exists
such that

f n(ut ; r) < ut < f (ut ; r)

then an odd periodic solution exists, which thus implies chaos. For example, with

ut+1 = f (ut ; r) = ut exp [r(1 − ut )]

if r = 3.0 and u0 = 0.1, a computation of the first few terms shows

u7 = f 5(u2) < u2 < f (u2) = u3,

that is, n = 5 in the above inequality requirement. Hence this f (ut ; r) with r = 3 is
chaotic.

2.4 Stability, Periodic Solutions and Bifurcations

All relevant population models involve at least one parameter, r say. From the above
discussion, as this parameter varies the solutions of the general model equation

ut+1 = f (ut ; r), (2.17)

will usually undergo bifurcations at specific values of r . Such bifurcations can be to
periodic solutions with successively higher periods ultimately generating chaotic solu-
tionsfor r greater than some finite critical rc. From the graphical analysis such bifurca-
tions occur when the appropriate eigenvalues λ pass through λ = 1 or λ = −1. Here we
discuss some analytical results associated with these bifurcations. For algebraic simplic-
ity we shall often omit the r in f (ut ; r) (unless we want to emphasise a point) by writing
f (ut ) but the dependence on a parameter will always be understood. The functions f
we have in mind are qualitatively similar to that illustrated in Figure 2.2.

The equilibrium points or fixed points of (2.17) are solutions of

u∗ = f (u∗; r) ⇒ u∗(r). (2.18)

To investigate the linear stability of u∗ we write, in the usual way,

ut = u∗ + vt , | vt | ≪ 1. (2.19)

Substituting this into (2.17) and expanding for small vt , using a Taylor expansion, we
get
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u∗ + vt+1 = f (u∗ + vt )

= f (u∗) + vt f ′(u∗) + O(v2
t ), | vt | ≪ 1.

Since u∗ = f (u∗) the linear (in vt ) equation which determines the linear stability of u∗

is then

vt+1 = vt f ′(u∗) = λvt , λ = f ′(u∗),

where λ is the eigenvalue of the first iterate (2.17) at the fixed point u∗. The solution is

vt = λtv0 →
{

0
±∞ as t → ∞ if |λ |

{
< 1
> 1

.

Thus

u∗ is
{

stable
unstable if

{−1 < f ′(u∗) < 1
| f ′(u∗) | > 1 . (2.20)

If u∗ is stable, any small perturbation from this equilibrium decays to zero, monotoni-
cally if 0 < f ′(u∗) < 1, or with decreasing oscillations if −1 < f ′(u∗) < 0. On the
other hand, if u∗ is unstable any perturbation grows monotonically if f ′(u∗) > 1, or
by growing oscillations if f ′(u∗) < −1. This is all as we deduced before by graphical
arguments.

As an example, the rescaled model (2.8) is

ut+1 = ut exp [r(1 − ut )], r > 0. (2.21)

Here the steady states are

u∗ = 0 or 1 = exp [r(1 − u∗)] ⇒ u∗ = 1. (2.22)

Thus the corresponding eigenvalues are

λu∗=0 = f ′(0) = er > 1 for r > 0,

so u∗ = 0 is unstable (monotonically), and

λu∗=1 = f ′(1) = 1 − r. (2.23)

Hence u∗ = 1 is stable for 0 < r < 2 with oscillatory return to equilibrium if 1 <

r < 2. It is unstable by growing oscillations for r > 2. Thus r = 2 is the first bifurcation
value. On the basis of the above we expect a periodic solution to be the bifurcation from
u∗ = 1 as r passes through the bifurcation value r = 2. For | 1 − ut | small (2.21)
becomes

ut+1 ≈ ut [1 + r(1 − ut )]
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which is exactly the form simulated in Figure 2.11. If we write it in the form

Ut+1 = (1 + r)Ut [1 − Ut ], where Ut = rut

1 + r
,

we get the same as the logistic model (2.11) with r + 1 in place of r . There we saw that
a stable periodic solution with period 2 appeared at the first bifurcation. With example
(2.21) the next bifurcation, to a 4-periodic solution, occurs at r = r4 ≈ 2.45 and a
6-periodic one at r = r6 ≈ 2.54 with aperiodic or chaotic behaviour for r > rc ≈ 2.57.
The successive bifurcation values of r for period doubling again become progressively
closer. The sensitivity of the solutions to small variations in r > 2 is quite severe in this
model: it is in most of them in fact, at least for the equivalent of r beyond the first few
bifurcation values.

After t iterations of u0, ut = f t (u0), using the notation defined in (2.13). A trajec-
tory or orbit generated by u0 is the set of points {u0, u1, u2, . . . } where

ui+1 = f (ui ) = f i+1(u0), i = 0, 1, 2, . . . .

We say that a point is periodic of period m or m-periodic if

f m(u0; r) = u0

f i (u0; r) ̸= u0 for i = 1, 2, . . . , m − 1
(2.24)

and that u0, a fixed point of the mapping f m in (2.24), is a period-m fixed point of the
mapping f in (2.17). The points u0, u1, . . . , um−1 form an m-cycle.

For the stability of a fixed point (solution) we require the eigenvalue; for the equi-
librium state u∗ it was simply f ′(u∗). We now extend this definition to an m-cycle of
points u0, u1, . . . , um−1. For convenience, introduce

F(u; r) = f m(u; r), G(u; r) = f m−1(u; r).

Then the eigenvalue λm of the m-cycle is defined as

λm = ∂ f m(u; r)

∂u

]

u=ui

i = 0 or 1 or 2 or . . . m − 1, (2.25)

= F ′(ui ; r)

= f ′(G(ui ; r))G ′(ui ; r)

= f ′(ui−1; r)G ′(ui ; r)

= f ′(ui−1; r)

[
∂ f m−1(ui ; r)

∂u

]

u=ui

and so

λm =
m−1∏

i=0

f ′(ui ; r), (2.26)

which shows that the form (2.25) is independent of i .
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In summary then, a bifurcation occurs at a parameter value r0 if there is a qualitative
change in the dynamics of the solution for r < r0 and r > r0. From the above discussion
we now expect it to be from one periodic solution to another with a different period. Also
when the sequence of even periods bifurcates to an odd-period solution the Sarkovskii
(1964) theorem says that cycles of every integer period exist, which implies chaos.
Bifurcations with λ = −1 are the period-doubling bifurcations while those with λ = 1
are the tangent bifurcations.

Using one of the several computer packages currently available which carry out al-
gebraic manipulations, it is easy to calculate the eigenvalues λ for each iterate and hence
generate the sequence of bifurcation values r using (2.25) or (2.26). There are system-
atic analytic ways of doing this which are basically extensions of the above; see, for ex-
ample, Gumowski and Mira (1980). There are also several approximate methods such as
that by Hoppensteadt and Hyman (1977). Since we are mentioning books here, that by
Strogatz (1994) is an excellent introductory text. You get some idea of the early interest
in chaosfrom the collection of reprints, put together by Cvitanović (1984), of some of
the frequently quoted papers, and the book of survey articles edited by Holden (1986);
in chemistry, the book by Scott (1991) is a good starting point. Chaos can also be used
to mask secret messages by superimposing on the message a chaotic mask, the chaos
model being available only to the sender and the recipient, who, on receiving the mes-
sage unmasks the chaos element. Strogatz (1994) discusses this in more detail. These
illustrate only very few of the diverse areas in which chaos has been found and studied.

2.5 Discrete Delay Models

All of the discrete models we have so far discussed are based on the assumption that
each member of the species at time t contributes to the population at time t + 1: this
is implied by the general form (2.1), or (2.17) in a scaled version. This is of course
the case with most insects but is not so with many other animals where, for example,
there is a substantial maturation time to sexual maturity. Thus the population’s dynamic
model in such cases must include a delay effect: it is, in a sense, like incorporating an
age structure. If this delay, to maturity say, is T time-steps, then we are led to study
difference delay models of the form

ut+1 = f (ut , ut−T ). (2.27)

In the model for baleen whales, which we discuss below, the delay T is of the order of
several years.

To illustrate the problems associated with the linear stability analysis of such mod-
els and to acquire a knowledge of what to expect from delay equations we consider the
following simple model, which, even so, is of practical interest.

ut+1 = ut exp [r(1 − ut−1)], r > 0. (2.28)

This is a delay version of (2.21). The equilibrium states are again u∗ = 0 and u∗ = 1.
The steady state u∗ = 0 is unstable almost by inspection; a linearisation about u∗ = 0
immediately shows it.
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We linearise about u∗ = 1 by setting, in the usual way,

ut = 1 + vt , | vt | ≪ 1

and (2.28) then gives

1 + vt+1 = (1 + vt ) exp [−rvt−1] ≈ (1 + vt )(1 − rvt−1)

and so

vt+1 − vt + rvt−1 = 0. (2.29)

We look for solutions of this difference equation in the form

vt = zt ⇒ z2 − z + r = 0

which gives two values for z, z1 and z2, where

z1, z2 = 1
2
[1 ± (1 − 4r)1/2], r <

1
4
, z1, z2 = ρe±iθ , r >

1
4

(2.30)

with

ρ = r1/2, θ = tan−1(4r − 1)1/2, r >
1
4
.

The solution of (2.29), for which the characteristic equation is the quadratic in z, is then

vt = Azt
1 + Bzt

2, (2.31)

where A and B are arbitrary constants.
If 0 < r < 1/4, z1 and z2 are real, 0 < z1 < 1, 0 < z2 < 1 and so from (2.31),

vt → 0 as t → ∞ and hence u∗ = 1 is a linearly stable equilibrium state. Furthermore
the return to this equilibrium after a small perturbation is monotonic.

If r > 1/4, z1 and z2 are complex with z2 = z1, the complex conjugate of z1. Also
z1z2 = | z1 |2 = ρ2 = r . Thus for 1/4 < r < 1, | z1 || z2 | < 1. In this case the solution
is

vt = Azt
1 + Bzt

1

and, since it is real, we must have B = A and so, with (2.30), the real solution

vt = 2| A |ρ t cos(tθ + γ ), γ = arg A, θ = tan−1(4r − 1)1/2. (2.32)

As r → 1, θ → tan−1
√

3 = π/3.
As r passes through the critical rc = 1, | z1 | > 1 and so vt grows unboundedly with

t → ∞ and u∗ is then unstable. Since θ ≈ π/3 for r ≈ 1 and vt ≈ 2| A | cos(tπ/3+γ ),
which has a period of 6, we expect the solution of (2.28), at least for r just greater than
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Figure 2.12. Solutions of the delay
difference equation (2.28), ut+1 = ut
exp[r(1 − ut−1)] for three values of
r > rc = 1. (a) r = 1.02. This shows the
6-period solution which bifurcates off the
steady state at r = rc . (b) r = 1.1. Here,
elements of a 6-cycle still exist but these are
lost in (c), where r = 1.4.

rc(= 1), to exhibit a 6-cycle periodic solution. Figure 2.12 illustrates the computed
solution for three values of r > 1. In Figure 2.12(b) there are still elements of a 6-
cycle, but they are irregular. In Figure 2.12(c) the element of 6-periodicity is lost and
the solution becomes more spikelike, often an early indication of chaos.

In the last chapter we saw how delay had a destabilising effect and it increased with
increasing delay. It has a similar destabilising effect in discrete models as is clear from
comparing the r -values in Figures 2.10 and 2.12. In the former, the critical rc = 2 and
the solution bifurcates to a 2-period solution, whereas in the latter delay case the critical
rc = 1 and bifurcation is to a 6-period solution. Again, the longer the delay the greater
the destabilising effect. This is certainly another reason why the modelling and analysis
in the following example gave cause for concern. Higher period solutions are often
characterised by large population swings and if the crash-back to low population levels
from a previous very high one is sufficiently severe, extinctionis a distinct possibility.
Section 2.7 briefly discusses a possible path to extinction.

To conclude this section we briefly describe a practical model used by the Inter-
national Whaling Commission (IWC) for the baleen whale. The aim of the IWC is to
manage the whale population for a sustained yield, prevent extinction, and so on. The
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commercial and cultural pressures on the IWC are considerable. To carry out its charter
requirements in a realistic way it must understand the dynamics of whale population
growth and its ecology.

A model for the now protected baleen whale which the IWC used is based on the
discrete-delay model for the population Nt of sexually mature whales at time t ,

Nt+1 = (1 − µ)Nt + R(Nt−T ). (2.33)

Here (1 − µ)Nt , with 0 < µ < 1, is the surviving fraction of whales that contribute
to the population a year later and R(Nt−T ) is the number which augments the adult
population from births T years earlier. The delay T is the time to sexual maturity and is
of the order of 5–10 years. This model assumes that the sex ratio is 1 and the mortality
is the same for each sex. The crux of the model is the form of the recruitment term
R(Nt−T ) which in the IWC model (see, for example, IWC 1979) is

R(N ) = 1
2
(1 − µ)T N

{
P + Q

[
1 −

(
N
K

)z]}
. (2.34)

Here K is the unharvested equilibrium density, P is the per capita fecundity of females
at N = K with Q the maximum increase in the fecundity possible as the population
density falls to low levels, and z is a measure of the severity with which this density
is registered. Finally 1 − µ is the probability that a newborn whale survives each year
and so (1 −µ)T is the fraction that survives to adulthood after the required T years: the
1/2 is because half the whales are females and so the fecundity of the females has to
be multiplied by N/2. This specific model has been studied in detail by Clark (1976a).
Further models in fisheries management generally, are discussed by Getz and Haight
(1989).

The parameters µ, T and P in (2.33) and (2.34) are not independent. The equilib-
rium state is

N∗ = Nt+1 = Nt = Nt−T = K ⇒ µ = 1
2
(1 − µ)T P = h (2.35)

which, as well as defining h, relates the fecundity P to the mortality µ and the delay T .
Independent measurement of these gives a rough consistency check. If we now rescale
the model with ut = Nt/K , (2.33), with (2.34), becomes

ut+1 = (1 − µ)ut + hut−T [1 + q(1 − uz
t−T )], (2.36)

where h is defined in (2.35) and q = Q/P . Linearising about the steady state u∗ = 1
by writing ut = 1 + vt the equation for the perturbation is

vt+1 = (1 − µ)vt + h(1 − qz)vt−T . (2.37)

On setting vt ∝ st ,

sT +1 − (1 − µ)sT + h(qz − 1) = 0, (2.38)



66 2. Discrete Population Models for a Single Species

which is the characteristic equation. The steady state becomes unstable when | s | > 1.
Here there are 4 parameters µ, T , h, and qz and the analysis centres around a study
of the roots of (2.38); see the paper by Clark (1976b). Although they are complicated,
we can determine the conditions on the parameters such that | s | < 1 by using the Jury
conditions (see Appendix B). The Jury conditions are inequalities that the coefficients of
a real polynomial must satisfy for the roots to have modulus less than 1. For polynomials
of order greater than about 4, the conditions are prohibitively unwieldy. When | s | > 1,
as is now to be expected, solutions of (2.33) exhibit bifurcations to periodic solutions
with progressively higher periods ultimately leading to chaos; the response parameter z
is critical.

Chaos and Data

Chaos is not really a particularly good name for the seemingly random chaotic be-
haviour exhibited by the solutions of deterministic equations such as we have been
discussing. When we look at complex experimental data and seek to model it with a
simple model we are implying that the underlying mechanism is actually quite simple.
So, when confronting real data it is important to know whether or not the random nature
is truly stochastic or chaotic in the deterministic sense here. Not surprisingly this turns
out to be a difficult and controversial problem. Although we may have some biological
insight as to what the mechanism might be governing the process and generating the
data it is unlikely we shall know it with sufficient certainty to be able to write down an
exact model for the mechanism. There are several methods which have been developed
to try to determine whether or not the data are stochastic or deterministically chaotic but
none is foolproof.

To appreciate the difficulty suppose we have data points, Nt say, which measure
some population at discrete times, t . If we plot Nt against Nt+1 and we obtain a rel-
atively smooth curve, say, one qualitatively like that in Figure 2.2, then it would be
reasonable to suggest a deterministic model for the generating mechanism, namely, a
model such as we have discussed here which can give rise to deterministic chaos. In
other words, we are finding a qualitative form for the f (Nt ) in (2.1). However, if it does
not give any sort of reasonable curve we cannot deduce that the underlying mechanism
is not deterministic. For example, in this section we saw that delay can be involved quite
naturally in a renewal process. In that case perhaps we could do a three-dimensional plot
with Nt−1 and Nt against Nt+1. If a relatively smooth surface results then it could be a
deterministic mechanism. Once again if it still gives a random number of points in this
space it again does not necessarily point to a nondeterministic model since the relation-
ship between Nt and Nt+1, or indeed Nt−1 or any other population value at earlier times
might simply be a more complex discrete model or involve more than one delay. The
choices are almost unlimited when seeking to determine the relationship from data.

A sound knowledge of the biology can, of course, considerably reduce the number
of possibilities. So, one approach is, for example, to try to determine a plausible model
a priori and, if it seems that only Nt and Nt+1 say, are involved at any time-step then
the data can sometimes be used to determine the quantitative details of the functional
relationship between the Nt and Nt+1. A surprisingly successful example of this arose
in the unlikely area of marital interaction and divorce prediction which we discuss in
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Chapter 5; see Cook et al. (1995) and the book by Gottman et al. (2002) on a general
theory of marriage. Here discrete coupled equations constitute the preliminary model.

A totally different example of how chaotic solutions of discrete equations can give
insight into a biological process is given by Cross and Cotton (1994). We discuss the
problem and their model and analysis below in Section 2.8.

2.6 Fishery Management Model
Discrete models have been used in fishery management for some considerable time.
They have often proven to be useful in evaluating various harvesting strategies with a
view to optimising the economic yield and to maintaining it. However, the comments
made at the end of Section 1.6 in Chapter 1 should very much be kept in mind. Just a few
of the relevant books on management strategies are those by Clark (1976b, 1985, 1990),
Goh (1982), Getz and Haight (1989), Hilborn and Mangel (1997), the series of papers
edited by Cohen (1987) and appropriate sections in the collection of articles edited by
Levin (1994). The following model is applicable, in principle, to any renewable resource
which is harvested; the detailed analysis applies to any population whose dynamics can
be described by a discrete model.

Suppose that the population density is governed by Nt+1 = f (Nt ) in the absence
of harvesting. If we let ht be the harvest taken from the population at time t , which
generates the next population at t + 1, then a model for the population dynamics is

Nt+1 = f (Nt ) − ht . (2.39)

The questions we address here are: (i) What is the maximum sustained biological yield?
(Compare with Section 1.5 in Chapter 1.) (ii) What is the maximum economic yield?

In equilibrium, Nt = N∗ = Nt+1, ht = h∗ where, from (2.39),

h∗ = f (N∗) − N∗. (2.40)

The maximum sustained steady state yield YM is when N∗ = NM where

∂h∗

∂N∗ = 0 ⇒ f ′(N∗) = 1 and YM = f (NM ) − NM . (2.41)

The only situation of interest of course is when YM ≥ 0.
A management strategy could be simply to maintain the population so as to get the

maximum yield YM . Since it is hard to know what the actual fish population is, this can
be difficult to accomplish. What is known is the actual yield and how much effort has
gone into getting it. So it is better to formulate the optimization problem in terms of
yield and effort.

Let us suppose that a unit effort to catch fish results in a harvest cN from a pop-
ulation N . The constant c is the ‘catchability’ parameter which is independent of the
population density N . Then the effort to reduce N by 1 unit is 1/cN and f (N ) by 1
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unit is 1/(c f (N )). Thus the effort EM to provide for a yield

YM = f (NM ) − NM is EM =
f (NM )∑

Ni =NM

(cNi )
−1.

Now if cN is large compared with 1 unit, we can approximate the summation in the last
equation by an integral and so

EM ≈ 1
c

∫ f (NM )

NM

N−1d N = 1
c

ln
{

f (NM )

NM

}
. (2.42)

The two equations (2.41) and (2.42) give the relation between EM and YM parametri-
cally in NM .

As an example suppose the unharvested dynamics is governed by Nt+1 = f (Nt ) =
bNt/(a + Nt ) with 0 < a < b; then

NM : 1 = f ′(NM ) = ab
(a + NM )2 ⇒ NM = a1/2(b1/2 − a1/2).

Substituting this into (2.41) and (2.42) gives

YM = bNM

(a + NM )
− NM , EM = 1

c
ln

{
b

(a + NM )

}
. (2.43)

In this example we can get an explicit relation between YM and EM , on eliminating
NM , as

YM = [b exp (−cEM) − a][exp (cEM) − 1]. (2.44)

Figure 2.13(a) illustrates the YM −EM relation. Using this, a crucial aspect of a manage-
ment strategy is to note that if an increase in effort reduces the yield, then the maximum

YM

Yc

Yc

0 0
Ec Ec EMEM Er

R(EM )

YM (EM )

Yr

(a) (b)

Figure 2.13. (a) The yield–effort relation (schematic) for the maximum sustained yield with the model dy-
namics Nt+1 = bNt /(a + Nt ), 0 < a < b. (b) The maximum revenue R as a function of the effort E as
compared with the YM − EM curve.
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sustained yield is exceeded, and the effort has to be reduced so that the population
can recover. The effort can subsequently be retuned to try to achieve Yc with Ec in
Figure 2.13(a), both of which can be calculated from (2.44). This analysis is for the
maximum sustained biological yield. The maximum economic yield must include the
price for the harvest and the cost of the effort. As a first model we can incorporate these
in the expression for the economic return R = pYM − k EM where p is the price per
unit yield and k is the cost per unit effort. Using (2.43) for YM (NM ) and EM (NM) we
thus have R(NM ) which we must now maximise. We thus get a curve for the maximum
revenue R as a function of the effort E ; it is illustrated in Figure 2.13(b).

Such ‘model’ results must not be taken too seriously unless backed up by experi-
mental observation. They can, however, give some important qualitative pointers. Our
analysis here has been based on the fact that the harvested population has a steady state.
Fish, in particular, have a high per capita growth rate which, in the detailed models we
have analysed, is related to the parameter r . We would expect, therefore, that the fish
population would exhibit periodic fluctuations and this is known to be the case. It is
possible that the growth rate is sufficiently high that the behaviour may, in some cases,
be in the chaotic regime. Since harvesting is, in a sense, an effective lowering of the
reproduction rate it is feasible that it could have a stabilising effect, for example, from
the chaotic to the periodic or even to a steady state situation.

2.7 Ecological Implications and Caveats

A major reason for modelling the dynamics of a population is to understand the prin-
ciple controlling features and to be able to predict the likely pattern of development
consequent upon a change of environmental parameters. In making the model we may
have, to varying degrees, a biological knowledge of the species and observational data
with which to compare the results of the analysis of the model. It may be helpful to
summarise what we can learn about a population’s dynamics from the type of models
we have considered and to point out a few of their difficulties and limitations.

When a plausible model for a population’s growth dynamics has been arrived at,
the global dynamics can be determined. Using graphical methods the changes in the
solutions as a major environment parameter varies can also be seen. From Figure 2.4,
for example, we see that if we start with a low population, it simply grows for a while,
then it can appear to oscillate quasi-regularly and then settle down to a constant state,
or exhibit periodic behaviour or just oscillate in a seemingly random way with large
populations at one stage and crash to very low densities in the following time-step.
Whatever the model, as long as it has a general form such as in Figure 2.6 the population
density is always bounded.

This seemingly random dynamics poses serious problems from a modelling point
of view. Are the data obtained which exhibit this kind of behaviour generated by a
deterministic model or by a stochastic situation? It is thus a problem to decide which is
appropriate and it may not actually be one we can resolve in a specific situation. What
modelling can do, however, is to point to how sensitive the population dynamics can be
to changes in environmental parameters, the estimation of which is often difficult and
usually important.
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The type of dynamics exhibited with f (Nt ) such as in Figure 2.6, shows that the
population is always bounded after a long time by some maximum Nmax and minimum
Nmin: the first few iterations can lie below Nmin if N0 is sufficiently small. With Fig-
ure 2.6 in mind the maximum Nmax is given by the first iteration of the value where
Nt+1 = f (Nt ) has a maximum, Nm say. That is,

d f
d Nt

= 0 ⇒ Nm, Nmax = f (Nm).

The minimum Nmin is then the first iterative of Nmax, namely,

Nmin = f (Nmax) = f ( f (Nm)) = f 2(Nm). (2.45)

These ultimately limiting population sizes are easy to work out for a given model. For
example, with

Nt+1 = f (Nt ) = Nt exp
[

r
(

1 − Nt

K

)]
, f ′(Nt ) = 0 ⇒ Nm = K

r

Nmax = f (Nm) = K
r

er−1,

Nmin = f ( f (Nm)) = K
r

exp [2r − 1 − er−1].

(2.46)

With a steeply decreasing behaviour of the dynamics curve Nt+1 = f (Nt ) for
Nt > Nm , the possibility of a dramatic drop in the population to low values close to
Nmin brings up the question of extinction of a species. If the population drops to a value
Nt < 1 the species is clearly extinct. In fact extinction is almost inevitable if Nt drops
to low values. At this stage a stochastic model is required. However an estimate of
when the population drops to 1 or less, and hence extinction, can be obtained from the
evaluation of Nmin for a given model. The condition is, using (2.45),

Nmin = f 2(Nm) ≤ 1,
d f
d N

∣∣∣∣
N=Nm

= 0. (2.47)

With the example in (2.46) this condition is

K
r

exp [2r − 1 − er−1] ≤ 1.

So if r = 3.5 say, and if K < 1600 approximately, the population will eventually
become extinct.

An important phenomenon is indicated by the analysis of this model (2.46); the
larger the reproduction parameter r the smaller is Nmin and the more likelihood of a
population crash which will make the species extinct. Note also that it will usually
be the case that the population size immediately before the catastrophic drop is large.
With the above example if r = 3.5 it is almost 3500, from (2.46). An interesting and
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potentially practical application of the concept of extinctionis that of introducing sterile
species of a pest to try to control the numbers; see Exercise 6 below. The high cost of
such a procedure, however, is often prohibitive.

An important group of models not specifically discussed up to now but which come
into the general class (2.1) is those which exhibit the Allee effect. Biological populations
which show this effect decrease in size if the population falls below a certain threshold
level Nc say. A typical density-dependent population model which illustrates this is
shown in Figure 2.14. If we start with a population, N0 say, such that f 2(N0) < Nc
then Nt → 0. Such models usually arise as a result of predation. The continuous time
model for the budworm equation (1.6) in Chapter 1, has such a behaviour. The region
Nt < Nc is sometimes called the predation pit. Here Nt = 0, Nc, N∗ are all steady
states with Nt = 0 stable, Nc unstable and N ∗ stable or unstable depending on f ′(N∗)
in the usual way. With this type of dynamics, extinction is inevitable if Nt < Nc, irre-
spective of how large Nc may be. Models which show an Allee effect display an even
richer spectrum of behaviour than those we considered above, namely, all of the exotic
oscillatory behaviour plus the possibility of extinction if any iterate f m(Nt ) < Nc for
some m.

The implications from nonlinear discrete models such as we have considered in
this chapter rely crucially on the biological parameters obtained from an analysis of
observational data. Southwood (1981) discussed, among other things, these population
parameters and presented hard facts about several species. Hassell et al. (1976) have
analysed a large number of species life data and fitted them to the model Nt+1 =
f (Nt ) = r Nt/(1 + aNt )

b with r , a and b positive parameters; see also the book by
Kot (2001). With b > 1 this f (Nt ) has one hump like those in Figure 2.2. For example,
the Colorado beetle is well within the stable periodic regime while Nicholson’s (1954)
blowflies could be in the chaotic regime.

Finally, it should be emphasised here that the richness of solution behaviour is a
result of the nonlinearity of these models. It is also interesting that many of the qualita-

Nt+1

0
Nc N0 N∗ Nt

Nt+1 = f (Nt )

Nt+1 = Nt

Figure 2.14. A population model which exhibits the Allee effect, whereby if the population Nt < Nc at any
time t then Nt → 0, that is, extinction.
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tive features can be found by remarkably elementary methods even though they present
some sophisticated and challenging mathematical problems.

2.8 Tumour Cell Growth

Cross and Cotton (1994) discuss a problem in pathology, in which the data are given for
a population, denoted by Nt , consisting of tumour cells. In their analysis they chose the
simple logistic form given by (2.5) with K = 1, namely,

Nt+1 = r Nt (1 − Nt ), (2.48)

where r reflects the growth rate of the tumour cells. The normalisation of Nt to 1 means
that Nt is the fraction of the total population of cells that can be sustained in the cell cul-
ture container. We know from the analysis in Sections 2.2 through 2.4 that for r < 3 the
population Nt simply increases until it reaches its steady state (r − 1)/r , which it does
relatively quickly if N0 is not too small: for example, if N0 = 0.001 and r = 2 the popu-
lation roughly doubles with each time-step. For r > 3 periodic solutions appear, eventu-
ally giving rise to chaos for r > rc. With r in the chaotic regime the population of cells
at any time, t , would depend critically on the initial conditions. Figure 2.15 illustrates
typical population growth for different values of r . In Figure 2.15(b) Nt approaches a
periodic solution but in the early stages also exhibits a quasi-sigmoidal growth curve.
In Figure 2.15(c) the solution is chaotic.

Suppose multi-clonality is included in the model with the various cell clones having
different initial populations. Let us further suppose that their growth rates are different
but all with an r > rc and so they all exhibit chaotic behaviour. A major pathologi-
cal interest is in the total size of the tumour, that is, the total number of cells. Cross
and Cotton (1994) considered first 5 clones and summed their populations to obtain
the total population. A typical result is illustrated in Figure 2.16(a). We begin to see
the beginning of a smoothing of the chaotic behaviour and the tentative appearance of
the sigmoidlike character of the population in Figure 2.15(a). When they included 200
clones the smoothing effect was much more pronounced as illustrated in Figure 2.16(b).
Multi-clonality is common in tumour growth and data exhibit growth patterns such as
in Figure 2.16(b). With this simple example it is clear that multi-clonality could obscure
an underlying deterministic chaos. There are gross assumptions in this model such as
assuming that the growth parameter r is constant for each clone for all time. Modelling
how cell division varies with time is an interesting problem in its own right because
of the transition from discrete division to essential continuous division for an initial
group of new cells. It was discussed by Murray and Frenzen (1986). A varying growth
parameter in the multi-clone situation suggests that an age-structured model might be
more appropriate. It would be interesting to investigate the growth characteristics of a
multi-clone system with age structure with each clone in the chaotic growth regime and
how variable growth rates and age structure could manifest themselves in experimental
observations.

Many biological processes are chaotic, or if not strictly chaotic in the sense here, at
the least stochastic, but nevertheless when seen in neurology, pathology and physiology,
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Figure 2.15. Starting with the same initial populations the graphs display typical cell growth curves—
sigmoidal growth curves for various r : (a) 0 < r < 3, (b) 3 < r < rc . For r > rc we get typical chaotic
behaviour (see also Figure 2.16). Initial value: N0 = 10−6.
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Figure 2.16. Total mean population fraction Nt with (a) 5 clones and (b) 200 clones; r = 3.98 (> rc). The
chaotic smoothing is greater the larger the number of clones, each of which individually exhibits deterministic
chaos. The initial conditions were N0 = 10−6 times a random number. (These curves are equivalent to those
in Cross and Cotton 1994.)
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for example, seem to exhibit considerable order. A recent review of the possible connec-
tion with epilepsy is given by Iasemidis and Sackellares (1996). Among other things,
one reason they feel it is of relevance is that in many chaotic sytems there are sharply in-
termittent transitions between regions of chaos—highly disordered states—and highly
ordered regions; Figure 2.11 is a typical example. They hypothesize that epilepsy may
be an example of chaos and the careful analysis of electroencephalograms with this in
mind has provided some new insights into the whole epileptogenetic process. They feel
it could have possible use in both the diagnosis and treatment of epilepsy.

An interesting study (Larter et al. 1999) on the role of chaos in brain activity also
suggests that chaos is the norm but during an epileptic seizure the activity becomes
abnormally regular. In epileptic fits called partial seizures (patients with these are least
responsive to medication) only part of the brain starts to exhibit regularity and this
spreads and the seizure spreads accordingly. They studied a thousand interconnecting
neurons and subjected the equation system to perturbations to try to understand how
communication takes place. Among other things they were interested in what affects the
rate of transfer from regular behaviour in one region to a neighbouring chaotic region.
Their aim also is to apply the results in treating patients who suffer from partial seizures.

In the case of wave activity in the heart (see Chapter 1, Volume II) it is quite the
opposite. If regular activity becomes chaotic, a disorder called cardiac fibrillation, it
is fatal unless the heart can be shocked back into regularity: the usual method is by a
massive electric shock.

Another example, mentioned by Cross and Cotton (1994), is that the growth of
human hair is normally asynchronous but there are circumstances when it is synchro-
nised by various (usually disease) stimuli. A common example is during pregnancy and
delivery when all the hairs are synchronised in the telogen stage, that is, the resting
stage in the cell cycle, the consequence of which is temporary baldness; the condition
is called telogen effluvium (Benedict et al. 1991). From the graphs in Figure 2.16 there
is increasing order with the number of clones which suggests there is a mechanism for
‘antichaos,’ a word that is increasingly appearing in the literature. It has similarities to
synchronisation which occurs in a variety of biological situations. One example is with
certain cells in culture which initially had different cell cycles but can be induced, with
an appropriate stimulus, to become synchronised. Another is the synchronisation of fire-
flies which we discuss later in Chapter 9 where we discuss biological oscillators. A very
different type of antichaos has been found by Benchetrit et al. (1987) and Demongeot
et al. (1987 and 1996) in the analysis of chaotic breathing patterns. The latter used the
concepts of the new field of variability theory, developed by Aubin (1991), and showed
how a certain coherent order could be extracted from underlying chaos (in the sense
of this chapter). An interesting approach to the concept of attractors and confiners was
developed by Demongeot and Jacob (1989) and Cosnard and Demongeot (1985).

Exercises

1 All the following discrete time population models are of the form Nt+1 = f (Nt ) and
have been taken from the ecological literature and all have been used in modelling
real situations. Determine the nonnegative steady states, discuss their linear stabil-
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ity and find the first bifurcation values of the parameters, which are all taken to be
positive.

(i) Nt+1 = Nt

[
1 + r

(
1 − Nt

K

)]
,

(ii) Nt+1 = r N 1−b
t , if Nt > K ,

= r Nt , if Nt < K ,

(iii) Nt+1 = r Nt

(1 + aNt )b ,

(iv) Nt+1 = r Nt

1 +
(

Nt
K

)b .

2 Construct cobweb maps for:

(i) Nt+1 = (1 + r)Nt

1 + r Nt
,

(ii) Nt+1 = r Nt

(1 + aNt )b , a > 0, b > 0, r > 0

and discuss the global qualitative behaviour of the solutions. Determine, where pos-
sible, the maximum and minimum Nt , and the minimum for (ii) when b ≪ 1.

3 Verify that an exact solution exists for the logistic difference equation

ut+1 = rut (1 − ut ), r > 0

in the form ut = A sin2 αt by determining values for r , A and α. Is the solution (i)
periodic? (ii) oscillatory? Describe it! If r > 4 discuss possible solution implications.

4 The population dynamics of a species is governed by the discrete model

Nt+1 = f (Nt ) = Nt exp
[

r
(

1 − Nt

K

)]
,

where r and K are positive constants. Determine the steady states and their cor-
responding eigenvalues. Show that a period-doubling bifurcation occurs at r = 2.
Briefly describe qualitatively the dynamic behaviour of the population for r = 2+ε,
where 0 < ε ≪ 1. In the case r > 1 sketch Nt+1 = f (Nt ) and show graphically or
otherwise that, for t large, the maximum population is given by Nm = f (K/r) and
the minimum possible population by Nm = f ( f (K/r)). Since a species becomes
extinct if Nt ≤ 1 for any t > 1, show that irrespective of the size of r > 1 the species
could become extinct if the carrying capacity K < r exp [1 + er−1 − 2r ].

5 The population of a certain species subjected to a specific kind of predation is mod-
elled by the difference equation
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ut+1 = a
u2

t

b2 + u2
t
, a > 0.

Determine the equilibria and show that if a2 > 4b2 it is possible for the population
to be driven to extinction if it becomes less than a critical size which you should find.

6 It has been suggested that a means of controlling insect numbers is to introduce
and maintain a number of sterile insects in the population. One such model for the
resulting population dynamics is

Nt+1 = RN 2
t

(R − 1)
N2

t
M + Nt + S

,

where R > 1 and M > 0 are constant parameters, and S is the constant sterile insect
population.

Determine the steady states and discuss their linear stability, noting whether
any type of bifurcation is possible. Find the critical value Sc of the sterile population
in terms of R and M so that if S > Sc the insect population is eradicated. Construct
a cobweb map and draw a graph of S against the steady state population density, and
hence determine the possible solution behaviour if 0 < S < Sc.

7 A discrete model for a population Nt consists of

Nt+1 = r Nt

1 + bN 2
t

= f (Nt ),

where t is the discrete time and r and b are positive parameters. What do r and b
represent in this model? Show, with the help of a cobweb, that after a long time the
population Nt is bounded by

Nmin = 2r2

(4 + r2)
√

b
≤ Nt ≤ r

2
√

b
.

Prove that, for any r , the population will become extinct if b > 4.
Determine the steady states and their eigenvalues and hence show that r =

1 is a bifurcation value. Show that, for any finite r , oscillatory solutions for Nt are
not possible.

Consider a delay version of the model given by

Nt+1 = r Nt

1 + bN 2
t−1

= f (Nt ), r > 1.

Investigate the linear stability about the positive steady state N ∗ by setting Nt =
N∗ + nt . Show that nt satisfies

nt+1 − nt + 2(r − 1)r−1nt−1 = 0.
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Hence show that r = 2 is a bifurcation value and that as r → 2 the steady state
bifurcates to a periodic solution of period 6.

8 A basic delay model used by the International Whaling Commission (IWC) for mon-
itoring whale populations is

ut+1 = sut + R(ut−T ), 0 < s < 0,

where T ≥ 1 is an integer.
(i) If u∗ is a positive equilibrium show that a sufficient condition for linear stability

is | R′(u∗) | < 1 − s. [Hint: Use Rouché’s theorem on the resulting character-
istic polynomial for small perturbations about u∗.]

(ii) If R(u) = (1 − s)u[1 + q(1 − u)], q > 0 and the delay T = 1, show that
the equilibrium state is stable for all 0 < q < 2. [With this model, T is the
time from birth to sexual maturity, s is a survival parameter and R(ut−T ) the
recruitment to the adult population from those born T years ago.]

9 Consider the effect of regularly harvesting the population of a species for which the
model equation is

ut+1 = bu2
t

1 + u2
t

− Eut = f (ut ; E), b > 2, E > 0,

where E is a measure of the effort expended in obtaining the harvest, Eut . [This
model with E = 0 is a special case of that in Exercise 5.] Determine the steady
states and hence show that if the effort E > Em = (b − 2)/2, no harvest is obtained.
If E < Em show, by cobwebbing ut+1 = f (ut ; E) or otherwise, that the model is
realistic only if the population ut always lies between two positive values which you
should determine analytically.

With E < Em evaluate the eigenvalue of the largest positive steady state.
Demonstrate that a tangent bifurcation exists as E → Em .


