Homework 6: Population dynamics

- 1. For the Verhulst equation $\frac{dx}{dt} = rx\left(1 \frac{x}{K}\right)$ K $\big).$
	- (a) Determine steady states.
	- (b) Can the found steady states coexist, i.e. be stable for the same parameter set?
- 2. The spread of infectious diseases can be modeled by a system of nonlinear ODE's. The simplest known example is so called SIR model. The total population is divided into three disjoint groups: Susceptible (S) , Infected (I) , and Recovered (R) individuals. The model assumes for simplicity that the total population is constant, i.e. $(S+I+R)'=0$. Susceptible individuals become infected when the two meet and infected ones recover at certain rate, i.e. $S' = -\beta SI$ and $I' = \beta SI - \nu I$ (R can be determined once $S(t)$ and $I(t)$ are found given the constant population size).
	- (a) Find equilibria and S- and I-nullclines.
	- (b) Sketch the phase portrait of the system.
	- (c) The constant size of the population suggests that there can be a constant of motion. Try to identify it, using the analogy of the Volterra equations from the lecture.
	- (d) Plot the levels of the constant of motion in Matlab to verify you sketched the phase portrait correctly.
- 3. Consider the map (applied to real populations): $N_{t+1} = \frac{rN_t}{1 + kT}$ $1 + bN_t^2$ $, b > 0$ (you may want to use run map to support your calculations).
	- (a) Identify the steady states and determine parameter conditions of their existence.
	- (b) For each steady state find parameter conditions of its stability.
	- (c) Identify the bifurcation values of the parameter r , where stability of the steady states or their number change.
	- (d) What is the biological meaning of the parameter r (recall logistic equation)? Can it be negative?
- (e) Find the cycles of the system for $b = 1$. If you have identified any cycle, can it occur in real situation according to the model? Explain why?
- 4. (extra/optional) Recall Kolmogorov system:

$$
\begin{cases}\n\frac{dx}{dt} & = k_1(x)x - L(x)y \\
\frac{dy}{dt} & = k_2(x)y\n\end{cases}
$$

Steady states are:

i)
$$
\begin{cases} x = 0 \\ y = 0 \end{cases}
$$
 ii)
$$
\begin{cases} x = A \\ y = 0 \end{cases}
$$
 iii)
$$
\begin{cases} x = B \\ y = C \end{cases}
$$

where $k_1(A) = 0$, $k_2(B) = 0$, and $C = \frac{k_1(B)B}{L(B)}$ $\frac{1(D)D}{L(B)}$

(a) Remembering that $\frac{dk_1(x)}{dx} < 0, \frac{dk_2(x)}{dx} > 0, k_2(0) < 0 < k_2(\infty),$ $L(x) > 0$, prove that i) is saddle, ii) is a stable node/saddle (determine conditions), and iii) is stable/unstable node or focus (determine conditions).