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Reaction-Diffusion Modeling

Diffusion is the thermal motion of all (liquid or gas) particles
at temperatures above absolute zero.

» Homogeneous system: probability of finding any randomly
selected molecule inside volume AV is AV/V.

» Homogeneous and thermal equilibrium — well-stirred
(much more nonreactive than reactive collisions happen).

» Sometimes spatial effects play an important role in
addition to temporal effects and we need to include
diffusive effects to our modeling (spatiotemporal,
inhomogeneous, heterogeneous).

» Diffusion: 1 dimensional (x) — 3 dimensional (x,y,z)



Before going further...

In an assemblage of particles (cells, bacteria, chemicals, animals
etc.) each particle usually moves around in a random way.
When this microscopic irregular movement results in some
macroscopic or gross regular motion of the group we can think
of it as a diffusion process [J. Murray Mathematical Biology, 3-d
edition, Springer, 2003].

Let’s consider simplest 1D case of random walk process.



1D random walk

Suppose a particle moves randomly backward and forward along
a line in a fixed steps Az that are taken in a fixed time At.
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What is the probability p(m,n) that a particle reaches a point
m space steps to the right (that is, = = mAx) after n time
steps (that is, after time nAt)?
Suppose that to reach mAx the particle has moved a steps to
the right and b steps to the left. Then
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m=a—0b, a+b=n = a= b=n-—a



1D random walk

1 n! n+m
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p(m’n):?la!(n—a)!’ 2

Stirling’s formula is:
n! ~ (2mn)/?ne™
Given (1) and (2) we can get (!!!):
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p(m,n) ~ () e~m?/(2n) , m>1, n>1.

™

For n = 8 and m = 6 (3) is within 5% of the exact value
from (1). Check it at home!



Continuous case

mAxr =x, nAt=t
where z and t are continuous.
We cannot use p(m,n) as it must tend to zero since number of
points on the line tends to co as Ax — 0. The relevant
dependent variable is more appropriately u = p/(2Ax): 2ulAz is
the probability of finding a particle in the interval (z,z + Ax)
at time t. From (3) with m = x/Az and n = t/At

p(asa) [ A 1/26Xp 2 At
2Ax 27t (Ax)? 2t (Ax)? |~

If we assume

2
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=D #£0; D is diffusion coefficient

the last equation gives

P25 A0) _ ( 1 )1/2 o—2/(4Dt)

t)= 1
uz,t) = Jim =,
At—0

4 Dt



Classical Fickian diffusion laws

The first Fick’s law says: the flux J of material is proportional
to the gradient of the concentration of the material. Thus, in 1D

J=—-D—
ox

where c¢(z,t) is the concentration and D is diffusion coefficient.
Conservation equation says that the rate of change of the
amount of material in a region is equal to the rate of flow across
the boundary plus any that is created within the boundary. If
the region is g < z < 1 and no material is created

o [™
/ e )z = J(xo,1) — J(21,1).
ot Jy

If we take x1 = x¢o + Az, take the limit as Az — 0 and the first

Fick’s law we get the classical diffusion equation

de 8J 9D _ de d%c
N e ar If D is constant then 5 =Pz



Simple example

Consider calcium diffusing in a long dendrite. Calcium is
released from a small region around x = 0. Let’s denote the
concentration of calcium along the length of the dendrite at

each time ¢ as c(z,t).

The model is
o _ e
ot Ox?’
—oo <z < 00,t >0,
c(x,0) = cpd(x),

where 6(x) — Dirac
delta function and
lim ¢(x,t) =0.
r—+o00
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Gaussian function




Reaction Diffusion Equation

3D case

Let S be an arbitrary surface enclosing a volume V.

The general conservation equation says that the rate of change
of the amount of material in V is equal to the rate of flow of
material across S into V' plus the material created in V. Thus

a/c(x,t)dvz—/.]-ds—i—/fdv,
ot Jy s v

where J is the flux of material and f, which represents the
source of material, may be a function of ¢, x and t.
Applying divergence theorem to the surface integral and
assuming c(x, t) is continuous, the last equation becomes

Jdc
/V [at%-V.J—f(c,x,t)] dv = 0



Oc

/\/[&f—kv"]_f(caxat) dv =10

Since the volume V is arbitrary the integrand must be zero and
so the conservation equation for c is
Oc

a—i—V-J:f(c,x,t).

If classical diffusion is the process (the first Fickian law) then
J=-DVc

and 9
c
— = (D
En f+V-(DVe)

Generalising for a vector w;(x,t), each having own diffusion D;
and interacting according to vector source term f:
ou



ou

where D is a matrix of the diffusiion coefficients which is
diagonal matrix if there is no cross-diffusion.

Example of 2D model of 2 chemically
non-interacting (f=0) species:

Ifu=(Cy Cy):
oC1 __ 9%C 92C
D= <D11 D12> T = Duge + D
Dy1 Do

oC 9%C 92C.
% = D + Dn %G
0 Do
just two seperate equations, otherwise, two species interact
through diffusion only, since there is no source term f.

If there is no cross-diffusion then D = ( > and this is



Systems Iin Space

Partial Differential Equations (PDE).

Reaction-diffusion systems: 2" order parabolic
type.
General equation type:

u 0’ u
—=Fu)+D—
ot ox’

F(u) — reaction term

u — state variable (concentration), D — diffusion
coefficient, x — space variable, t — time.



Types of spatial solutions

Waves (of very different nature): triggered,
phase, pulses.

Fronts (strictly speaking, belongs to waves).
Turing patterns.
Otherwise, classification is complicated.



Fronts

 Two types of fronts:

— Unstable and stable steady states (Fisher-
Kolmogorov)

— Two stable steady states (FitzHugh-Nagumo)



Fisher-Kolmogorov

* F(u) =u(1-u): reaction term

ou 0”u
—=u(l-u)+ D—
ot ox”

 Two steady states:
u =0 (unstable) and u = 1 (stable).

* Front propagation due to movement from u=0
to u=1 steady state.
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FitzZHugh-Nagumo

* F(u) = u(k-u)(u-1) : reaction term

ou_ u(k—u)(u—1)+D82—u
ot axz

* Three steady states: u = 0 (stable),
u=k(unstable) and u = 1 (stable).

* Front propagation direction depends on k:
— k < 0.5: from left to right
— k > 0.5: from right to left
— k =0.5: front is still




Pulses

Pulses can appear in the excitable media

(neurons).
* Full (2D) version of FitzHugh- Nagumo
Ou 0°u
—=u(a-u)u-1)-kv+D, —
J ot “ ox’
oV u-—cv 9’
— = +Dv —2
L Ot T 0x
L 15 0_:3, Parameters: | / \‘ | A



Turing patterns

* Predicted by Alan Turing (Enigma code, first
computer, theoretical work on morphogenesis

in 1952).

* Onlyin 1990 using specialized experimental
techniques in the group of De Kepper the first
Turing patterns were shown experimentally
(Phys. Rev. Lett, 64, 2953, 1990).



Linear stability analysis

ou

i F(u) + DAu
32

= 22

d
» Equilibrium is: ditl = F(ug) =0

(A

» Apply small perturbation du and expand F'(up + du) into a
Taylor series:

(up + ou)

5 = F(up) + Jou + DA(ug + du)

9(du)
ot

» Solution to this equation is a function:

= Joéu + DA(du)

A - exp(Mt + ikx)



Linear stability analysis

» Characteristic equation becomes:
A=J-kD

where )\ is eigenvalue, k is wave number.

» At least one positive Re(\) indicates existence of
instabilities.

» If Im(\) = 0, given Re(\) > 0 — inhomogeneous periodic
in space structures with the wavelength of I, = 27 /kpqs
where kg — the wavenumber at which Re(A) is
maximized. Turing structures, Turing instabilities.

» If Im(\) # 0, given Re(\) > 0 — “genuine waves” (not
triggered in excitable media), periodic both in
space (wavelength [, = 27 /kp,q4,) and time (period
T = 27 /Im(A)maz, maz corresponds to the wavenumber at
which Re(A) is maximized, Im(\) = w). Wave instability,
finite wavelength instability.



Turing instability
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CDIMA and BZ chemical systems.



Wave instability
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CDIMA reaction
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CDIMA reaction
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In real systems
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Kondo, S. and Asal, R., A reaction-diffusion wave on the skin of the
marine angelfish Pomacanthus, Nature 376, 765 (1995)



In real systems (catfish Plecostoms)

Kondo, S., The reaction-diffusion system: a mechanism for autonomous
pattern formation in the animal skin, Genes to Cells 7, 535 (2002).



In real systems (leopard)
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Liu, R. T., Liaw, S. S., and Maini, P. K., Two-stage Turing model for
generating pigment patterns on the leopard and the jaguar, Phys.
Rev. E 74, 011914 (2006).
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Appendix: spatial patterns

Waves in oscillatory media

Spirals in hydrodynamics.
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Spirals

Super spirals.
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Segmented spirals.
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(2003).




“Genuine” waves
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Wave speed is estimated about 15 me/s



