Dynamical Systems and Chaos Part II: Biology Applications

Lecture 11: Reaction-Diffusion Systems.

Ilya Potapov Mathematics Department, TUT Room TD325

KOR & KERKER ADA KON

Diffusion is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero.

- \blacktriangleright Homogeneous system: probability of finding any randomly selected molecule inside volume ΔV is $\Delta V/V$.
- \blacktriangleright Homogeneous and thermal equilibrium \rightarrow well-stirred (much more nonreactive than reactive collisions happen).
- ► Sometimes spatial effects play an important role in addition to temporal effects and we need to include diffusive effects to our modeling (spatiotemporal, inhomogeneous, heterogeneous).
- \triangleright Diffusion: 1 dimensional (x) 3 dimensional (x,y,z)

In an assemblage of particles (cells, bacteria, chemicals, animals etc.) each particle usually moves around in a random way. When this *microscopic* irregular movement results in some *macroscopic* or gross regular motion of the group we can think of it as a diffusion process [J. Murray *Mathematical Biology*, 3-d edition, Springer, 2003].

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

Let's consider simplest 1D case of random walk process.

1D random walk

Suppose a particle moves randomly backward and forward along a line in a fixed steps Δx that are taken in a fixed time Δt .

What is the probability $p(m, n)$ that a particle reaches a point *m* space steps to the right (that is, $x = m\Delta x$) after *n* time steps (that is, after time $n\Delta t$)? Suppose that to reach $m\Delta x$ the particle has moved *a* steps to

the right and *b* steps to the left. Then

$$
m = a - b
$$
, $a + b = n$ \Rightarrow $a = \frac{n + m}{2}$, $b = n - a$

$$
p(m,n) = \frac{1}{2^n} \frac{n!}{a!(n-a)!}
$$

KOR & KERKER ADA KON

1D random walk

$$
p(m,n) = \frac{1}{2^n} \frac{n!}{a!(n-a)!}, \quad a = \frac{n+m}{2} \tag{1}
$$

Stirling's formula is:

$$
n! \sim (2\pi n)^{1/2} n^n e^{-n}
$$
 (2)

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Given (1) and (2) we can get $(!!!)$:

$$
p(m,n) \sim \left(\frac{2}{\pi n}\right)^{1/2} e^{-m^2/(2n)}, \quad m \gg 1, \quad n \gg 1.
$$
 (3)

For $n = 8$ and $m = 6$ (3) is within 5% of the exact value from (1). Check it at home!

Continuous case

$$
m\Delta x = x, \quad n\Delta t = t
$$

where *x* and *t* are continuous.

We cannot use $p(m, n)$ as it must tend to zero since number of points on the line tends to ∞ as $\Delta x \to 0$. The relevant dependent variable is more appropriately $u = p/(2\Delta x)$: $2u\Delta x$ is the probability of finding a particle in the interval $(x, x + \Delta x)$ at time *t*. From (3) with $m = x/\Delta x$ and $n = t/\Delta t$

$$
\frac{p(\frac{x}{\Delta x}, \frac{t}{\Delta t})}{2\Delta x} \sim \left\{ \frac{\Delta t}{2\pi t (\Delta x)^2} \right\}^{1/2} \exp \left\{ -\frac{x^2}{2t} \frac{\Delta t}{(\Delta x)^2} \right\}.
$$

If we assume

$$
\lim_{\substack{\Delta x \to 0 \\ \Delta t \to 0}} \frac{(\Delta x)^2}{2\Delta t} = D \neq 0; \quad D \text{ is diffusion coefficient}
$$

the last equation gives

$$
u(x,t) = \lim_{\substack{\Delta x \to 0 \\ \Delta t \to 0}} \frac{p(\frac{x}{\Delta x}, \frac{t}{\Delta t})}{2\Delta x} = \left(\frac{1}{4\pi Dt}\right)^{1/2} e^{-x^2/(4Dt)}.
$$

Classical Fickian diffusion laws

The first Fick's law says: the flux *J* of material is proportional to the gradient of the concentration of the material. Thus, in 1D

$$
J = -D\frac{\partial c}{\partial x}
$$

where $c(x, t)$ is the concentration and *D* is diffusion coefficient. Conservation equation says that the rate of change of the amount of material in a region is equal to the rate of flow across the boundary plus any that is created within the boundary. If the region is $x_0 < x < x_1$ and no material is created

$$
\frac{\partial}{\partial t} \int_{x_0}^{x_1} c(x, t) dx = J(x_0, t) - J(x_1, t).
$$

If we take $x_1 = x_0 + \Delta x$, take the limit as $\Delta x \to 0$ and the first Fick's law we get the classical diffusion equation

$$
\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x} = \frac{\partial (D\frac{\partial c}{\partial x})}{\partial x}.
$$
 If *D* is constant then
$$
\frac{\partial c}{\partial t} = D\frac{\partial^2 c}{\partial x^2}.
$$

 QQ

Simple example

Consider calcium diffusing in a long dendrite. Calcium is released from a small region around $x = 0$. Let's denote the concentration of calcium along the length of the dendrite at each time t as $c(x, t)$.

Gaussian function

$$
G_i = \frac{1}{2\sqrt{\pi\sigma t}} \exp\left(-\frac{x^2}{4\sigma t}\right)
$$

$$
\frac{\partial G_i}{\partial t} = \frac{1}{2\sqrt{\pi\sigma t}} \exp\left(-\frac{x^2}{4\sigma t}\right) \left[-\frac{1}{2t} + \frac{x^2}{4\sigma t^2}\right]
$$

$$
\frac{\partial^2 G_i}{\partial x^2} = \frac{1}{\sigma} \left\{ \frac{1}{2\sqrt{\pi\sigma t}} \exp\left(-\frac{x^2}{4\sigma t}\right) \left[-\frac{1}{2t} + \frac{x^2}{4\sigma t^2} \right] \right\}
$$

$$
\frac{\partial G_i}{\partial t} = \sigma \frac{\partial^2 G_i}{\partial x^2} \Rightarrow \boxed{D = \sigma}
$$

K □ ▶ K @ ▶ K 할 X K 할 X [할 X] 9 Q Q ·

3D case

Let *S* be an arbitrary surface enclosing a volume *V*. *The general conservation equation says that the rate of change of the amount of material in V is equal to the rate of flow of material across S into V plus the material created in V .* Thus

$$
\frac{\partial}{\partial t} \int_V c(\mathbf{x}, t) dv = - \int_S \mathbf{J} \cdot \mathbf{ds} + \int_V f dv,
$$

where J is the flux of material and *f*, which represents the source of material, may be a function of *c*, x and *t*. Applying divergence theorem to the surface integral and assuming $c(\mathbf{x}, t)$ is continuous, the last equation becomes

$$
\int_{V} \left[\frac{\partial c}{\partial t} + \nabla \cdot \mathbf{J} - f(c, \mathbf{x}, t) \right] dv = 0
$$

$$
\int_{V} \left[\frac{\partial c}{\partial t} + \nabla \cdot \mathbf{J} - f(c, \mathbf{x}, t) \right] dv = 0
$$

Since the volume *V* is arbitrary the integrand must be zero and so the conservation equation for *c* is

$$
\frac{\partial c}{\partial t} + \nabla \cdot \mathbf{J} = f(c, \mathbf{x}, t).
$$

If classical diffusion is the process (the first Fickian law) then

$$
\mathbf{J} = -D\nabla c
$$

and

$$
\frac{\partial c}{\partial t} = f + \nabla \cdot (D \nabla c)
$$

Generalising for a vector $u_i(\mathbf{x}, t)$, each having own diffusion D_i and interacting according to vector source term f:

$$
\frac{\partial \mathbf{u}}{\partial t} = \mathbf{f} + \nabla \cdot (D \nabla \mathbf{u}).
$$

$$
\frac{\partial \mathbf{u}}{\partial t} = \mathbf{f} + \nabla \cdot (D \nabla \mathbf{u})
$$

where D is a matrix of the diffusion coefficients which is diagonal matrix if there is no cross-diffusion.

Example of 2D model of 2 chemically non-interacting $(f=0)$ species: If $\mathbf{u} = (C_1 \ C_2)$:

$$
\mathbf{D} = \begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{pmatrix} \qquad \begin{aligned} \frac{\partial C_1}{\partial t} &= D_{11} \frac{\partial^2 C_1}{\partial x^2} + D_{12} \frac{\partial^2 C_2}{\partial x^2} \\ \frac{\partial C_2}{\partial t} &= D_{21} \frac{\partial^2 C_1}{\partial x^2} + D_{22} \frac{\partial^2 C_2}{\partial x^2} \end{aligned}
$$

If there is no cross-diffusion then $D =$ $\begin{pmatrix} D_{11} & 0 \\ 0 & D_{22} \end{pmatrix}$ and this is just two seperate equations, otherwise, two species interact through diffusion only, since there is no source term f .

Systems in Space

- Partial Differential Equations (PDE).
- Reaction-diffusion systems: 2nd order parabolic type.
- General equation type:

$$
\frac{\partial u}{\partial t} = F(u) + D \frac{\partial^2 u}{\partial x^2}
$$

- $F(u)$ reaction term
- u state variable (concentration), D diffusion coefficient, x – space variable, t – time.

Types of spatial solutions

- Waves (of very different nature): triggered, phase, pulses.
- Fronts (strictly speaking, belongs to waves).
- Turing patterns.
- Otherwise, classification is complicated.

Fronts

- Two types of fronts:
	- Unstable and stable steady states (Fisher-Kolmogorov)
	- Two stable steady states (FitzHugh-Nagumo)

Fisher-Kolmogorov

• $F(u) = u(1-u)$: reaction term

$$
\frac{\partial u}{\partial t} = u(1 - u) + D \frac{\partial^2 u}{\partial x^2}
$$

• Two steady states:

 $u = 0$ (unstable) and $u = 1$ (stable).

• Front propagation due to movement from u=0 to u=1 steady state.

Fisher-Kolmogorov

FitzHugh-Nagumo

• $F(u) = u(k-u)(u-1)$: reaction term

$$
\frac{\partial u}{\partial t} = u(k - u)(u - 1) + D \frac{\partial^2 u}{\partial x^2}
$$

- Three steady states: $u = 0$ (stable), u=k(unstable) and $u = 1$ (stable).
- Front propagation direction depends on k: $-k < 0.5$: from left to right
	- $-k > 0.5$: from right to left
	- $k = 0.5$: front is still

Pulses

- Pulses can appear in the excitable media (neurons).
- Full (2D) version of FitzHugh-Nagumo: ∂*u* ∂*t* $= u(a - u)(u - 1) - kv + D_u$ $\partial^2 u$ ∂x^2 ∂*v* = *u* − *cv* $+ D_{\scriptscriptstyle v}$ $\partial^2 v$ ∂x^2 \int)
1 $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ \lfloor $\begin{array}{c} \hline \end{array}$ $\overline{\mathcal{L}}$

 $\boldsymbol{\mathcal{T}}$

Turing patterns

- Predicted by Alan Turing (Enigma code, first computer, theoretical work on *morphogenesis* in 1952).
- Only in 1990 using specialized experimental techniques in the group of De Kepper the first Turing patterns were shown experimentally (Phys. Rev. Lett, 64, 2953, 1990).

Linear stability analysis

$$
\frac{\partial u}{\partial t} = F(u) + D\Delta u
$$

 $(\Delta = \frac{\partial^2}{\partial x^2})$

- Equilibrium is: $\frac{du}{dt} = F(u_0) = 0$
- \triangleright Apply small perturbation δu and expand $F(u_0 + \delta u)$ into a Taylor series:

$$
\frac{\partial (u_0 + \delta u)}{\partial t} = F(u_0) + J\delta u + D\Delta (u_0 + \delta u)
$$

$$
\frac{\partial (\delta u)}{\partial t} = J\delta u + D\Delta (\delta u)
$$

 \triangleright Solution to this equation is a function:

$$
A \cdot \exp(\lambda t + ikx)
$$

Linear stability analysis

Characteristic equation becomes:

$$
\lambda = J - k^2 D
$$

where λ is eigenvalue, *k* is wave number.

- \triangleright At least one positive Re(λ) indicates existence of *instabilities*.
- If Im(λ) = 0, given Re(λ) > 0 inhomogeneous periodic in space structures with the wavelength of $l_c = 2\pi/k_{max}$, where k_{max} — the wavenumber at which $Re(\lambda)$ is maximized. Turing structures, Turing instabilities.
- If Im(λ) \neq 0, given Re(λ) $>$ 0 "genuine waves" (not triggered in excitable media), periodic both in space (wavelength $l_c = 2\pi/k_{max}$) and time (period $T = 2\pi / \text{Im}(\lambda)_{max}$, *max* corresponds to the wavenumber at which Re(λ) is maximized, Im(λ) = ω). Wave instability, finite wavelength instability.YO K (FE) (E) ORA

Turing instability

CDIMA and BZ chemical systems.

K ロ X K @ X K 할 X K 할 X (할

 2990

Wave instability

メロト メタト メミト メミト 290 高

CDIMA reaction

CDIMA reaction

In real systems

Kondo, S. and Asal, R., A reaction-diffusion wave on the skin of the marine angelfish *Pomacanthus*, Nature 376, 765 (1995)

In real systems (catfish *Plecostoms*)

Kondo, S., The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin, Genes to Cells 7, 535 (2002).

In real systems (leopard)

Liu, R. T., Liaw, S. S., and Maini, P. K., Two-stage Turing model for generating pigment patterns on the leopard and the jaguar, Phys. Rev. E **74**, 011914 (2006).

References

- J.D. Murray, Mathematical Biology. I. An Introduction, 3rd ed, ISBN 0-387-95223-3, Springer, 2002.
- A.M. Turing, The Chemical Basis of Morphogenesis, Phil. Trans. Royal Soc., 237, 641 , pp. $37 - 72$.

Appendix: spatial patterns Waves in oscillatory media

Spirals in hydrodynamics. E. Bodenschatz, W. Pesch, G. Ahlers. *Annu. Rev. Fluid Mech.* v. 32 (2000), 709

Spirals in *Xenopus Laevis* oocytes. Scale bar $= 100 \mu m$.

J. D. Lechleiter, L. M. John, P. Camacho. *Biophys. Chem*. 72 (1998) 123.

Spirals in cones and pineapples. P. Atela, C. Golé, and S. Hotton, J. Nonlinear Sci. v.12 (2002) 641

Spirals

Super spirals.

Perez-Muñuzuri, V., Aliev, R., Vasiev, B., Perez-Villar, V. & Krinsky, V. I. *Nature* **353** (1991) 740

Segmented spirals.

V. K. Vanag and I. R Epstein, Proc. Natl. Acad. Sci. **100**, 14635 (2003).

"Genuine" waves

NAD(P)H waves in neutrophils. Freq. $= 0.1$ s. Zoom x980. Wave speed is estimated about 15 μ m/s.