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The simplest example revisited

> dx/dt =1 - .
» ¥ =0 is a steady state.
» r < 0: T is stable.

» r > 0: z is unstable.

v

r = 0: singularity point, = 0 always (not moving in time).
x 4 » Solutions as a function of

parameters for the
“simplest example”.

l l l i l T T T I > Any vertical cross-section

. through the plane is a

T T T T T l i i " phase line.
l » Arrows denote movement

of the system along the
phase lines.




The extended simplest example

> dx/dt=1r-x+a
» a > 0 and is a constant.

Figure: Note we have introduced new notations: solid line indicates
stable steady state, whereas dashed line — unstable steady state.



Bifurcations of Dynamical Systems

» Bifurcation is a significant/drastic change in the dynamical
behaviour of the dynamical system...

> ... or, in other words, change in topology of the phase
space.

» Bifurcations take place, when parameters of the system
vary.
» Parameter value, at which a bifurcation occurs, is called

bifurcation value.

> Bifurcation diagram is a plot showing solutions of the
system as a function of parameter(s).

» The number of parameters needed to be changed for a
bifurcation to occur is called codimension (codim) of the
bifurcation.



Simple codim-1 bifurcation

Consider the system

i=f(z) = a—a?
For different o system has different number of steady state
solutions and the phase portrait of the system changes.
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Bifurcation diagram I
> &= 22

» Steady states are: a = 2.

«

Figure: Bifuraction diagram: two steady states exist only for positive
« values, while they coalesce at a« = 0 and disappear, i.e. there are no
equilibria for a < 0.



Codim-2 bifurcation: cusp bifurcation

i =a; + oz + 23

For negative and positive aiy the system has considerably
different phase portraits.
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Bifurcation diagram II

> &= ay + agr + 28
3
—r —
» Steady states are: ag = —2° — asx, g = ———
x

» The bifurcation diagram is in 3D: (aq, a2, ).
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» NOTE: «a; = 0 (right) gives a parabola (see the steady
state relations).



Bifurcation diagram II

> &=y + asr + 28

» Bistability region is between curves LP; and LP5: two
sinks separated by a saddle.

» After cusp there is only one stable steady state.

AR

Figure: Bistability between LP;
and LPy curves (Left) and
monostable dynamics everywhere

else (Right).

4 X

7
cusp

o

oy




Planar linear systems (2D)

» We consider a system of the form:

dj—am—}—b
at Y
%:czn—i—dy

» We will often use the matrix representation:

X' = AX

i\ [a b\ [z
b)) \e d) \x9

» In this case X = <m1) = (a:> and A = (a b> is a
T2 Y c d

matrix of the coefficients.

» that is



Planar linear systems: example

» Consider an example:
dr y
e ,
dt N :L“, _ 0 1\ /x
dy Y -1 0/ \y
bt A
dt

> At every time moment ¢ the tangent vector to the point
(z(t),y(t))) is determined by the RHS. That is, the tangent

vector is (y(t), —x(t)).
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Planar example (continued)
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(z,y)-plane along the arrows, which are the numerical approximations

Figure: The solution (z(t),y(t)) of the system winds its way on the
of the tangent vectors.



Connection with 2nd order ODE’s

v

Planar (2D) linear systems are usually connected with
linear 2nd order ODE’s, which are important in physics.

v

For example, the harmonic oscillator equation is:

ma” + b’ +kx =0

» It can be rewritten in the form:
¥ =y
, b k
Yy=——Yy——x
m m



2D equilibria

» X' = AX.
» In order to find equilibria we need to solve algebraic
system:
ar +by =0
{ cx+dy =0

» The equations correspond to lines passing through the
origin (0,0). The intersection point between the two lines
is an equilibrium point. The intersection is always (0, 0).

» The system has: i) a single unique equilibrium point (0, 0),
or ii) it has infinite number of solutions.

» case ii) takes place, when lines corresponding to each of the
equations are the same.

» From linear algebra: det A #0 = case i, det A=0=
case ii.



Note from linear algebra

v

For the system

s (00
cx +dy =0 c d)\y) \B

the following is true (given A is non-zero matrix):

v

det A # 0: unique solution (intersection of two lines).
det A = 0:

» inifinite number of solutions (the two lines coincide).
» no solutions (the lines are parallel).

v

> (g) = (8) the two lines pass through the origin (0, 0)

and cannot be parallel (when they are parallel they
coincide).



Solutions of the 2D systems

» X' = AX

» The function X (t) = eMV} is a solution, where Vj is a
eigenvector, i.e. it satisfies AVy = AVj, where X is called
eigenvalue and A\ € R.

» Let us compute
X'(t) = XMV

= M(AW)
— M(AVp)
— A(MVp)
= AX(t)
» Thus, the solution X (¢) is bound with the eigenvector.



Eigenvectors and eigenvalues

To find the eigenvector we need to solve:

o) 5 -() ()

= (A— ) (Z’) =0

v

1= <(1) ?) is an identity matrix.

v

(A—XI) (g) = 0 is also a system of linear equations

regarding x and y.

v

But now (!) we are interested in nonzero/nonunique
solutions, because x and y are the components of the
eigenvector V.

Thus, det(A — A\I) = 0 is a condition.

v



Eigenvalues

» det(A — \I) = 0 is equivalent to a=A b

A= (¢ 3)

» This leads to a quadratic equation in A\ (characteristic

equation):
a— A\ b 2
e gl = 0= (@=N)(d=N)=be = 0 = X —(atd)A+ad—be
» Finally:
\ a+d++/(a+d)?—4(ad — be)
12 =

2

» Then we can find the eigenvectors associated with each of

b
Ai,eg V= (Ai — -y,y) orV; = (w,)\zc_d$> (note
system is redundant).




Time-dependent solutions

» We have shown that X;(t) = e**V; (V; is an associated
eigenvector) is a straight-line solution of the system. But
this is not a general solution for any initial value.

» It can be shown (see Hirsch et al. book) that the general
solution is:

Z(t) = Cle)\ltvl + C2eA2tVZ = Cle(t) + CQXQ(t)

» Generally, if X;(t) and X3(t) are solutions, then it can be
proven that their linear combination C; X (t) + C2Xa(t) is
also solution. Then it proves that this form is a unique
solution for any initial value Z(0) = C1X;(0) + C2X2(0).

» Constants C7 and Cy are to be found from the initial
conditions.



Temporal behavior of solutions

» V1 and V5 are linearly independent vectors and, thus, can
form a basis in R? (that is, any other vector can be
expressed as a linear combination of these two).

» So the temporal movement of the general solution
Z(t) = C1eMtV] + Che*2t Vs will be determined by A2 as to
how fast (|A;| value) and toward or from the origin (sign of
A;) the system moves along the correpsponding vectors V;.



A1, Ao — both negative (SINK)

Re A1 2 < 0= both X;(¢) and X2(t) components tend to zero.
For example, a = -10, =2, ¢c=2,d = -5 =

—1544/225—4-(50—4) ]
A2 = 5 =75+ YA (Vi ~ 6.4)

2r NOCNNNNN N NN NN s s s e
SONSNNNNNNN N W s s s

150 SN OSNANNN MNN s s 2T

S AN N A/ . 3
BN NN N\ of - -~
e BRGSO Wl A
IS SRt
osp ITTTTITIN T
> or - - @ S S
-051 J l“\ N IS T
4| QN e
7 R RS S
s AR AN\ N NS NN
ZEARERRNE\NENANENE N N
RSN N\ NN
-1 PRSI E NER NOEO OO
AR SN NN NN NS
L e r o IERER h AN h N L
-25 -2 -15 -1 -05 [ 05 1 15 2 25
X
Here, the blue lines — solutions, green points — initial

conditions, red circle — the equilibrium, arrows — vectors
tangent to the solutions.



A1, Ay — both positive (SOURCE)

Re A12 > 0 = both X;(¢) and X»(t) components tend to oo.
For example, a =10, b =2, ¢c=2,d=5 =
Ay = 15+ 225;4.(50—4) — 754+ @ ( /A1 ~ 6.4)
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A1, Ay — different signs (SADDLE)

Re A1 < 0,Re Ay > 0 = component X;(¢) tends to zero whereas
Xo(t) tends to co. For example,a=1,b=1,¢=1,d=-1 =

0£/02—4-(—1-1
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One A equals zero (REDUNDANT)

That is, solutions: i) do not move along the vector
corresponding to the zero A and ii) tend away (the nonzero

A > 0) or toward (the nonzero A\ < 0) an equilibrium along the
vector corresponding to the nonzero A. Thus, all points of the
line corresponding to the zero-\ vector become equilibria.

For example,a=1,b=1,c=1,d=1=

A2 = Hy240-1) _ 0V 2. In this case,

Vi = (—1,1) (equilibrium line) and V5 = (1, 1) (parallel to the
solutions).
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NOTE: the program drew only
one default equilibrium point
(0,0), although in this case the
whole line is equilibria.




A1, Ay — complex conjugates (FOCUS/SPIRAL)
A12 is of the form a £ bi. For example, a = —1, b =1, c = —4,
d=—1= \g= —VEPAUZED) g o,

The system has oscillatory solution (complex eigenvalues), but
with damped (Re A; 2 < 0) or expanding (Re Aj 2 > 0)
amplitude. The former is stable focus, the latter is unstable
focus.
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0 (CENTER)

so called center = oscillatory
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Special case of the focus point,
_0+4/02—4(—1—

regime.

For example, a = 1,

A1, A2 — complex conjugates. Re Aq o
A12



Classification of planar systems

For the system of equations:

dx
E =ax + by vectorizec dX.
e X\ x
dy dt
Y =cr+dy

The characteristic polynomial is det(A — AI) = 0, i.e. for 2D:

a — )\ b . 2 .
c d_)\‘—0:>)\ —-TA+A=0,
where 7 = a+d and A = Z Z are trace and determinant of
the matrix A, respectively. NOTE: 7 = A1 + Ao and A = A Ao.
N T+V712 —4A
1 2=——"—FF "

' 2



Solutions plane

T

unstable nodes
2 —4A =0

unstable spirals

saddle nodes centers
A
/ stable spirals
non-isolated
fixed points stars,

stable nodes degenerate nodes

Wikipedia: http://en.wikipedia.org/wiki/Linear_dynamical_system


http://en.wikipedia.org/wiki/Linear_dynamical_system

Summary

» Linear systems are easy to analyse.

» Moreover, linear systems analysis is a powerful tool to
understand qualitative dynamics of the nonlinear systems
as well, which we will see in later lectures.

» To revise the material see Hirsch et al. book, Chapters 2—4.



