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The simplest example revisited

I dx/dt = r · x.

I x̄ = 0 is a steady state.

I r < 0: x̄ is stable.

I r > 0: x̄ is unstable.

I r = 0: singularity point, x = 0 always (not moving in time).

I Solutions as a function of
parameters for the
“simplest example”.

I Any vertical cross-section
through the plane is a
phase line.

I Arrows denote movement
of the system along the
phase lines.



The extended simplest example
I dx/dt = r · x+ a
I a > 0 and is a constant.

Figure: Note we have introduced new notations: solid line indicates
stable steady state, whereas dashed line — unstable steady state.



Bifurcations of Dynamical Systems

I Bifurcation is a significant/drastic change in the dynamical
behaviour of the dynamical system...

I ... or, in other words, change in topology of the phase
space.

I Bifurcations take place, when parameters of the system
vary.

I Parameter value, at which a bifurcation occurs, is called
bifurcation value.

I Bifurcation diagram is a plot showing solutions of the
system as a function of parameter(s).

I The number of parameters needed to be changed for a
bifurcation to occur is called codimension (codim) of the
bifurcation.



Simple codim-1 bifurcation

Consider the system

ẋ = f(x) ≡ α− x2

For different α system has different number of steady state
solutions and the phase portrait of the system changes.
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Bifurcation diagram I
I ẋ = α− x2
I Steady states are: α = x2.

Figure: Bifuraction diagram: two steady states exist only for positive
α values, while they coalesce at α = 0 and disappear, i.e. there are no
equilibria for α < 0.



Codim-2 bifurcation: cusp bifurcation

ẋ = α1 + α2x+ x3

For negative and positive α2 the system has considerably
different phase portraits.
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Bifurcation diagram II

I ẋ = α1 + α2x+ x3

I Steady states are: α1 = −x3 − α2x, α2 =
−x3 − α1

x
I The bifurcation diagram is in 3D: (α1, α2, x).

Projections:

I NOTE: α1 = 0 (right) gives a parabola (see the steady
state relations).



Bifurcation diagram II

I ẋ = α1 + α2x+ x3

I Bistability region is between curves LP1 and LP2: two
sinks separated by a saddle.

I After cusp there is only one stable steady state.

Figure: Bistability between LP1

and LP2 curves (Left) and
monostable dynamics everywhere
else (Right).



Planar linear systems (2D)

I We consider a system of the form:
dx

dt
= ax+ by

dy

dt
= cx+ dy

I We will often use the matrix representation:

X ′ = AX

I that is (
x′1
x′2

)
=

(
a b
c d

)(
x1
x2

)
I In this case X =

(
x1
x2

)
=

(
x
y

)
and A =

(
a b
c d

)
is a

matrix of the coefficients.



Planar linear systems: example

I Consider an example:
dx

dt
= y

dy

dt
= −x

⇔
(
x′

y′

)
=

(
0 1
−1 0

)(
x
y

)

I At every time moment t the tangent vector to the point
(x(t), y(t))) is determined by the RHS. That is, the tangent
vector is (y(t),−x(t)).



Planar example (continued)

I

(
x′

y′

)
=

(
0 1
−1 0

)(
x
y

)

Figure: The solution (x(t), y(t)) of the system winds its way on the
(x, y)-plane along the arrows, which are the numerical approximations
of the tangent vectors.



Connection with 2nd order ODE’s

I Planar (2D) linear systems are usually connected with
linear 2nd order ODE’s, which are important in physics.

I For example, the harmonic oscillator equation is:

mx′′ + bx′ + kx = 0

I It can be rewritten in the form:x′ = y

y′ = − b

m
y − k

m
x

I Or: (
x′

y′

)
=

(
0 1

− k
m − b

m

)(
x
y

)



2D equilibria

I X ′ = AX.

I In order to find equilibria we need to solve algebraic
system: {

ax+ by = 0

cx+ dy = 0

I The equations correspond to lines passing through the
origin (0, 0). The intersection point between the two lines
is an equilibrium point. The intersection is always (0, 0).

I The system has: i) a single unique equilibrium point (0, 0),
or ii) it has infinite number of solutions.

I case ii) takes place, when lines corresponding to each of the
equations are the same.

I From linear algebra: detA 6= 0⇒ case i, detA = 0⇒
case ii.



Note from linear algebra

I For the system{
ax+ by = α

cx+ dy = β
⇒
(
a b
c d

)(
x
y

)
=

(
α
β

)
the following is true (given A is non-zero matrix):

I detA 6= 0: unique solution (intersection of two lines).

I detA = 0:
I inifinite number of solutions (the two lines coincide).
I no solutions (the lines are parallel).

I

(
α
β

)
=

(
0
0

)
: the two lines pass through the origin (0, 0)

and cannot be parallel (when they are parallel they
coincide).



Solutions of the 2D systems

I X ′ = AX

I The function X(t) = eλtV0 is a solution, where V0 is a
eigenvector, i.e. it satisfies AV0 = λV0, where λ is called
eigenvalue and λ ∈ R.

I Let us compute
X ′(t) = λeλtV0

= eλt(λV0)

= eλt(AV0)

= A(eλtV0)

= AX(t)

I Thus, the solution X(t) is bound with the eigenvector.



Eigenvectors and eigenvalues
To find the eigenvector we need to solve:

AV0 = λV0 ⇒ A

(
x
y

)
= λ

(
x
y

)
⇒ A

(
x
y

)
− λ

(
x
y

)
= 0

⇒ (A− λI)

(
x
y

)
= 0

I I =

(
1 0
0 1

)
is an identity matrix.

I (A− λI)

(
x
y

)
= 0 is also a system of linear equations

regarding x and y.

I But now (!) we are interested in nonzero/nonunique
solutions, because x and y are the components of the
eigenvector V0.

I Thus, det(A− λI) = 0 is a condition.



Eigenvalues

I det(A− λI) = 0 is equivalent to

∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = 0, given

A =

(
a b
c d

)
I This leads to a quadratic equation in λ (characteristic

equation):∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = 0⇒ (a−λ)(d−λ)−bc = 0⇒ λ2−(a+d)λ+ad−bc = 0

I Finally:

λ1,2 =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2

I Then we can find the eigenvectors associated with each of

λi, e.g. Vi =

(
b

λi − a
· y, y

)
or Vi =

(
x,

c

λi − d
· x
)

(note

system is redundant).



Time-dependent solutions

I We have shown that Xi(t) = eλitVi (Vi is an associated
eigenvector) is a straight-line solution of the system. But
this is not a general solution for any initial value.

I It can be shown (see Hirsch et al. book) that the general
solution is:

Z(t) = C1e
λ1tV1 + C2e

λ2tV2 ≡ C1X1(t) + C2X2(t)

I Generally, if X1(t) and X2(t) are solutions, then it can be
proven that their linear combination C1X1(t) + C2X2(t) is
also solution. Then it proves that this form is a unique
solution for any initial value Z(0) = C1X1(0) + C2X2(0).

I Constants C1 and C2 are to be found from the initial
conditions.



Temporal behavior of solutions

I V1 and V2 are linearly independent vectors and, thus, can
form a basis in R2 (that is, any other vector can be
expressed as a linear combination of these two).

I So the temporal movement of the general solution
Z(t) = C1e

λ1tV1 +C2e
λ2tV2 will be determined by λ1,2 as to

how fast (|λi| value) and toward or from the origin (sign of
λi) the system moves along the correpsponding vectors Vi.



λ1, λ2 — both negative (SINK)
Reλ1,2 < 0⇒ both X1(t) and X2(t) components tend to zero.
For example, a = −10, b = 2, c = 2, d = −5 ⇒
λ1,2 =

−15±
√

225−4·(50−4)
2 = −7.5±

√
41
2 (
√

41 ≈ 6.4)
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Here, the blue lines — solutions, green points — initial
conditions, red circle — the equilibrium, arrows — vectors

tangent to the solutions.



λ1, λ2 — both positive (SOURCE)

Reλ1,2 > 0⇒ both X1(t) and X2(t) components tend to ∞.
For example, a = 10, b = 2, c = 2, d = 5 ⇒
λ1,2 =

15±
√

225−4·(50−4)
2 = 7.5±

√
41
2 (
√

41 ≈ 6.4)
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λ1, λ2 — different signs (SADDLE)

Reλ1 < 0,Reλ2 > 0⇒ component X1(t) tends to zero whereas
X2(t) tends to ∞. For example, a = 1, b = 1, c = 1, d = −1 ⇒
λ1,2 =

0±
√

02−4·(−1−1)
2 = ±

√
2
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One λ equals zero (REDUNDANT)
That is, solutions: i) do not move along the vector
corresponding to the zero λ and ii) tend away (the nonzero
λ > 0) or toward (the nonzero λ < 0) an equilibrium along the
vector corresponding to the nonzero λ. Thus, all points of the
line corresponding to the zero-λ vector become equilibria.
For example, a = 1, b = 1, c = 1, d = 1 ⇒
λ1,2 =

2±
√

22−4·(1−1))
2 = 0 ∨ 2. In this case,

V1 = (−1, 1) (equilibrium line) and V2 = (1, 1) (parallel to the
solutions).
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NOTE: the program drew only
one default equilibrium point
(0, 0), although in this case the
whole line is equilibria.



λ1, λ2 — complex conjugates (FOCUS/SPIRAL)
λ1,2 is of the form a± bi. For example, a = −1, b = 1, c = −4,

d = −1 ⇒ λ1,2 =
−2±
√

(−2)2−4·(1−(−4))
2 = −1± 2i

The system has oscillatory solution (complex eigenvalues), but
with damped (Reλ1,2 < 0) or expanding (Reλ1,2 > 0)
amplitude. The former is stable focus, the latter is unstable
focus.
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λ1, λ2 — complex conjugates. Reλ1,2 = 0 (CENTER)

Special case of the focus point, so called center ⇒ oscillatory
regime.
For example, a = 1, b = 1, c = −4, d = −1 ⇒
λ1,2 =

0±
√

02−4·(−1−(−4))
2 = ±

√
3i
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Classification of planar systems

For the system of equations:
dx
dt = ax+ by

dy
dt = cx+ dy

vectorized

⇒ dX

dt
= AX

The characteristic polynomial is det(A− λI) = 0, i.e. for 2D:∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = 0⇒ λ2 − τλ+ ∆ = 0 ,

where τ = a+ d and ∆ =

∣∣∣∣a b
c d

∣∣∣∣ are trace and determinant of

the matrix A, respectively. NOTE: τ = λ1 + λ2 and ∆ = λ1λ2.

λ1,2 =
τ ±
√
τ2 − 4∆

2



Solutions plane

Wikipedia: http://en.wikipedia.org/wiki/Linear_dynamical_system

http://en.wikipedia.org/wiki/Linear_dynamical_system


Summary

I Linear systems are easy to analyse.

I Moreover, linear systems analysis is a powerful tool to
understand qualitative dynamics of the nonlinear systems
as well, which we will see in later lectures.

I To revise the material see Hirsch et al. book, Chapters 2–4.


