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Nonlinear systems


x1
x2
. . .
xn

 =


F1(x1, x2, . . . , xn)
F2(x1, x2, . . . , xn)

. . .
Fn(x1, x2, . . . , xn)


I Fi(x) are generally defined nonlinear functions

(non-autonomous case, i.e. no time).

I As a general rule: no explicit analytical solution.

I Hence, there is a need for:
I Numerical methods (a numerically calculated solution for

any particular initial condition).
I Various analytical techniques (topological, analytic,

geometric).

I Moreover, particular solutions may be worthless
(chaos/randomness), since do not show the overall
dynamics of the system.



Planar systems


dx

dt
= P (x, y)

dy

dt
= Q(x, y)

I We consider 2D systems as they are easier to analyse
(algebraically, geometrically).

I Thus, we have a phase plane (cf. phase line for 1D).

I Since geometrically plane gives larger shape variants for
the trajectories we talk about phase portraits of systems
(in 1D there were no corresponding notion, but we saw
phase portraits in 2D linear systems).



Vector field 
dx

dt
= P (x, y)

dy

dt
= Q(x, y)

I Note that
Q(x, y)

P (x, y)
=
dy

dx
= tanα, where α is an angle

between X-axis and the vector, tangent to the solution
(trajectory).



Vector field


dx

dt
= P (x, y)

dy

dt
= Q(x, y)

I Sign of the functions
P (x, y) and Q(x, y)
determine the
direction of the
vector field.

I Their absolute
values — the vector
magnitudes or
“speed” of the
representative point.



Nullclines

I Note:

1. P (x, y) = 0 given Q(x, y) 6= 0
⇒ tanα =∞⇒ α = ±π/2(90◦)

2. Q(x, y) = 0 given P (x, y) 6= 0 ⇒ tanα = 0⇒ α = 0

I Thus, we know exactly at which angle the trajectories will
pass through the lines where P (x, y) = 0 or Q(x, y) = 0.

I The P (x, y) = 0 is called
x-nullcline.

I The Q(x, y) = 0 is called
y-nullcline.



Nullclines
I When two conditions are fulfilled simultaneously, i.e.

P (x, y) = 0 and Q(x, y) = 0, the derivatives
dx

dt
= 0 and

dy

dt
= 0.

I That is, the system does not move in time, hence, the
steady state.

I Thus, the intersections of the two curves P (x, y) = 0 and
Q(x, y) = 0 on the phase plane are steady states of the
system.



Other nullclines
I One can have other nullclines crossing the trajectories at

other angles α.

I If
Q(x, y)

P (x, y)
= A, then α = arctanA.

I For example, if A = 1, then α = 45◦.
I These sometimes called minor nullclines (as opposed to the

major ones with α = 0◦ and 90◦).



Sketching the vector field

I The major nullclines divide the phase space into regions.

I In each region one must determine the signs of the
functions P (x, y) and Q(x, y). For this it is enough to
“sample” one point from the region and plug into the
functions. The whole region will have the similarly
oriented vector field.

I At the major nullclines (i.e. crossing the border of the
region) either P (x, y) = 0 or Q(x, y) = 0 and the vector
field changes directions.

I Here by the direction of the vector field in the regions we
mean four main directions considered above: north-east,
south-east, south-west, north-west.



Sketching the vector field: example
I Consider the system: 

dx

dt
= y − x2

dy

dt
= y − 2

I P (x, y) = 0⇒ y = x2 and Q(x, y) = 0⇒ y = 2.



Sketching the vector field: example

I Now we can probe all six regions to determine signs of
P (x, y) and Q(x, y).

I A: P (0, 3) = 3 > 0, Q(0, 3) = 1 > 0 (northeast).

I B: P (0, 1) = 1 > 0, Q(0, 1) = −1 < 0 (southeast).

I C: P (2, 1) = −3 < 0, Q(2, 1) = −1 < 0 (southwest).

I D: P (2, 3) = −1 < 0, Q(2, 3) = 1 > 0 (northwest).

I E: P (−2, 3) = −1 < 0, Q(−2, 3) = 1 > 0 (northwest).

I F: P (−2, 1) = −3 < 0, Q(−2, 1) = −1 < 0 (southwest)



Sketching the vector field: example



Sketching the vector field: example

I Based on the vector field we can even see the stability of
the two equilibrium points.

I All flows tend away from the left equilibrium, thus it is
unstable.

I However, in some subregions of the phase space the vector
field is pointed toward the right equilibrium, whereas the
other subregions contain flows directed away from it. Thus,
the right equilibrium is a saddle.



Stability analysis

I There are various notions on stability according to:
Lyapunov, Poisson etc.

I We encountered the Lyapunov stability in the lecture on
linear planar systems.

I We will use those results here as well.

I The idea behind the stability analysis is to unerstand the
behavior of the linearized system in a close vicinity of the
steady states.

I How to linearize a generally nonlinear system?

I First, we apply small perturbations to the system at a
steady state.

I Then, we look at how the system behaves in time starting
from the perturbed state (we could equally look at how the
perturbation behaves in time, but the algebraic expressions
below would be slightly different).



Linear stability analysis

I The steady states of the system:{
P (x, y) = 0

Q(x, y) = 0
⇒

{
x = x̄

y = ȳ

I Apply small perturbation (ξ, η) at the equilibrium (x̄, ȳ):

x = x̄+ ξ, y = ȳ + η

I Plug new perturbed (x, y) into the equations:
d(x̄+ ξ)

dt
= P (x̄+ ξ, ȳ + η)

d(ȳ + η)

dt
= Q(x̄+ ξ, ȳ + η)



Linear stability analysis


dx̄

dt
+
dξ

dt
= P (x̄+ ξ, ȳ + η)

dȳ

dt
+
dη

dt
= Q(x̄+ ξ, ȳ + η)

I
dx̄

dt
=
dȳ

dt
= 0 by the definition of equilibrium.

I Functions P (x̄+ ξ, ȳ + η) and Q(x̄+ ξ, ȳ + η) can be
expanded into the Taylor series about the equilibrium point
(x̄, ȳ).

I While expanding the functions, we can take only the first
order terms (hence, the linear analysis).

I Taylor series of a function f(z) around a point z = a:

f(z) = f(a) + f ′(a)(z − a) + . . .



Linear stability analysis

I Similarly, the Taylor series of a function in two variables
f(u, v) around point (u0, v0):

f(u, v) = f(u0, v0)+f
′
u(u0, v0)·(u−u0)+f ′v(u0, v0)·(v−v0)+. . .

I So, given (u0, v0) = (x̄, ȳ), u− u0 = x− x̄ ≡ ξ and
v − v0 = y − ȳ ≡ η:

P (x, y) = P (x̄, ȳ) + P ′x(x̄, ȳ) · ξ + P ′y(x̄, ȳ) · η + . . .

Q(x, y) = Q(x̄, ȳ) +Q′x(x̄, ȳ) · ξ +Q′y(x̄, ȳ) · η + . . .

I Additionally, remembering that at equilibrium

P (x̄, ȳ) = Q(x̄, ȳ) =
dx̄

dt
=
dȳ

dt
= 0 and x = x̄+ ξ, y = ȳ + η:

dξ

dt
= P ′x(x̄, ȳ) · ξ + P ′y(x̄, ȳ) · η

dη

dt
= Q′x(x̄, ȳ) · ξ +Q′y(x̄, ȳ) · η



Linear stability analysis
dξ

dt
= P ′x(x̄, ȳ) · ξ + P ′y(x̄, ȳ) · η

dη

dt
= Q′x(x̄, ȳ) · ξ +Q′y(x̄, ȳ) · η

I Note that we assumed equality above, although it is an
approximation by the linear terms of the Taylor series.

I Clearly, this form now reminds us about the planar linear
systems we had before:(

ξ′

η′

)
=

(
P ′x(x̄, ȳ) P ′y(x̄, ȳ)

Q′x(x̄, ȳ) Q′y(x̄, ȳ)

)(
ξ
η

)
I Confer with what we had in the linear planar systems:(

x′

y′

)
=

(
a b
c d

)(
x
y

)



Linear stability analysis

I X ′ = AX, where

A =

(
P ′x(x̄, ȳ) P ′y(x̄, ȳ)

Q′x(x̄, ȳ) Q′y(x̄, ȳ)

)
I Matrix A is called Jacobian.

I Jacobian can be designated as J , i.e. A = J .

I Stability of an equilibrium is determined by the regular
procedure of finding eigenvalues of the Jacobian.



Example

I Let us consider the example we had earlier in this lecture:
dx

dt
= y − x2

dy

dt
= y − 2

I P (x, y) = y − x2, Q(x, y) = y − 2

I Steady states: {
y − x2 = 0

y − 2 = 0
⇒

{
y = 2

x = ±
√

2

I Thus, (x̄1, ȳ1) = (−
√

2, 2) and (x̄2, ȳ2) = (
√

2, 2).



Example (continued)

I P ′x = −2 · x, P ′y = 1, Q′x = 0, Q′y = 1

I (x̄1, ȳ1)⇒ J =

(
2
√

2 1
0 1

)
I (x̄2, ȳ2)⇒ J =

(
−2
√

2 1
0 1

)
I (x̄1, ȳ1):∣∣∣∣2√2− λ 1

0 1− λ

∣∣∣∣ = 0⇒ λ2 − (2
√

2 + 1)λ+ 2
√

2 = 0

⇒ λ1,2 =
2
√

2 + 1±
√

(2
√

2 + 1)2 − 4 · 2
√

2

2

⇒ λ1,2 =
2
√

2 + 1± (2
√

2− 1)

2
= 1 ∧ 2

√
2

I Thus, (x̄1, ȳ1) is an unstable node.



Example (continued)

I Similarly for the second equilibrium (x̄2, ȳ2):∣∣∣∣−2
√

2− λ 1
0 1− λ

∣∣∣∣ = 0⇒ λ2 − (1− 2
√

2)λ− 2
√

2 = 0

⇒ λ1,2 =
1− 2

√
2±

√
(1− 2

√
2)2 + 8

√
2

2

⇒ λ1,2 =
1− 2

√
2± (1 + 2

√
2)

2
= −2

√
2 ∧ 1

I Thus, (x̄2, ȳ2) is a saddle.

I Compare these results with the qualitative analysis of the
vector field we made earlier in this lecture.



Back to nonlinear system

I In the previous example we linearized the nonlinear system
and made direct association of the node and saddle type
equilibria of the linearized system with the original
nonlinear system.

I A nonlinear system around (in small enough vicinity of)
equilibria can be roughly approximated with the linearized
equations and the vector field around equilibria will be
conjugate to that of the linearized system around the
equilibria.

I But this is only for hyperbolic systems, i.e. those without
zero eigenvalues λi.

I If any λi = 0 then in order to be able to determine stability
one needs to consider higher order polynomials in Taylor
series. Moreover, small variations in the nonlinear
functions P (x, y) and Q(x, y) can change properties of
equilibria and, thus, lead to bifurcations.



Non-hyperbolic systems

I Recall that λ1,2 =
τ ±
√
τ2 − 4∆

2
, where τ and ∆ — trace

and determinant of the linearized matrix of coefficients,
respectively.

I Non-hyperbolic situation can occur:
I on the line ∆ = 0: redundant case, non-isolated equilibria

located on a line (the whole line is equilibria).
I on a part of the line τ = 0, where ∆ > 0: center points.

Picture from Wikipedia: http://en.wikipedia.org/wiki/Linear_dynamical_system

http://en.wikipedia.org/wiki/Linear_dynamical_system


∆ = 0 (redundant case)
I Consider the system: {

x′ = x2

y′ = −y

Figure: Linear (left) and nonlinear (right) phase portraits differ
significantly.



Center

I For τ = 0 and ∆ > 0, λi are purely imaginary.

I When Reλi = 0 and λ1,2 = ±2
√

∆i, linear system has a
center point, but in nonlinear systems with imaginary
eigenvalues Reλi = 0 is a condition for Andronov-Hopf
bifurcation (or simply Hopf).

I Hopf bifurcation is the birth of a limit cycle from an
equilibrium.

I Limit cycle is a closed orbit in the phase space
corresponding to the repeated motion, oscillations, that is
true nonlinear oscillations with dissipation.



Supercritical Hopf bifurcation

I Before the critical value of the parameter (α < 0) stable
focus exists; at the critical value (α = 0) the limit cycle
emerges whereas the focus loses stability; after it (α > 0)
exists the limit cycle and unstable equilibrium ⇒ all
trajectories tend toward the limit cycle.



Subcritical Hopf bifurcation

I Before the critical value of the parameter (α < 0) stable
equilibrium and unstable limit cycle exist; at the
bifurcation value (α = 0) the limit cycle merges with the
equilibrium and the latter loses stability ⇒ unstable
equilibrium (α > 0).



Summary

I We have considered simple geometrical techniques
(nullclines, vector fields) for analysis of the global dynamics
of nonlinear systems.

I We have also seen a way to understand stability of the
nonlinear dynamical system around its equilibria, using the
linearized form of the equations.

I Additionally, we have discussed the non-hyperbolic systems
where the linear stability analysis does not give an answer.
Moreover, these systems demonstrate new kind of
bifurcations (Hopf bifurcation).

I To get deeper into this read Hirsch et al. book, Chapter
8–9.


