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Discrete maps

xn+1 = f(xn)

I Discrete time steps.

I x0 is a seed of a sequence of numbers xn produced by the
map:

x0, x1 = f(x0), x2 = f(f(x0)), x3 = f(f(f(x0))), . . .

I We denote the n-fold composition of the function f with
itself as fn.

I Thus x0, x1 = f(x0), x2 = f2(x0), x3 = f3(x0), . . ..

I Example: f(x) = 2x+ 1, given x0 = 0. Then the sequence
is:

0, 1, 3, 7, 15, 31, 63, . . .

I Advantage: direct iteration of the map instead of finding
approximate or exact analytical solutions.



Steady states and periodic orbits

I If x0 is a steady state, then f(x0) = x0.

I Periodic orbit of period-n is an orbit where n is the least
positive integer for which fn(x0) = x0. Such orbits are also
called n-cycles.

I Example: f(x) = 2x− 1. x0 = 1 is a steady state, since
f(1) = 2 · 1− 1 = 1.

I Example: f(x) = −x3. x0 = ±1 produce period-2 orbits,
since f(1) = −1, f(−1) = 1 and f(−1) = 1, f(1) = −1.



Visualization of maps

I One useful way to visualize the dynamics of maps is to use
so called Lamerey diagrams.

I One is to draw y = f(x) and the diagonal y = x on the
same graph.

I Start with the point (x0, x0) on the diagonal.

I Draw a vertical line up to the graph y = f(x) (this will be
point (x0, x1)).

I Draw a horizontal line to the diagonal (point (x1, x1)).

I Continue iteration.



Graphical iteration

Figure: Examples of the Lamerey diagrams. Trajectory converges to z
at the left panel, while it expands (at least for the time steps shown)
on the right.



Stability of equilibria

I Steady states in a discrete dynamical systems can be
stable (sink), unstable (source), or neutral.

I If x0 is a sink-equilibrium (stable), then there exists a
neighborhood U in the vicinity of x0 such that if y0 ∈ U,
then fn(y0) ∈ U for all n and fn(y0)→ x0 as n→∞.

I In other words, one can find a region around the
equilibrium x0, where all points will map to the same
region and the mapped values will tend (with number of
iterated steps) to the equilibrium x0.

I For the source-equilibrium x0 (unstable) all points from
within the region around x0 will tend outside the region
with increasing number of iterations.

I There are also neutral steady states. This takes place if
neither of the above is true.



Stability

I Analytically stability of the equilibria can be assessed with:

I x0 is a sink, if |f ′(x0)| < 1.
I x0 is a source, if |f ′(x0) > 1.
I if f ′(x0) = ±1, nothing can be said about the stability of x0.



Stability of periodic orbits

I Note that period n orbits are fixed points of the operator
fn. In other words, fn(x0) = x0.

I Thus, one can classify the periodic orbits as sinks or
sources depending on whether |(fn)′(x0)| < 1 or
|(fn)′(x0)| > 1, respectively.



Logistic map

f(x) = λx(1− x)

I Steady states: λx(1− x) = x, so x̄1 = 0 and x̄2 =
λ− 1

λ
.

I Stability: f ′(x) = λ− 2λx, so f ′(0) = λ, f ′(λ−1λ ) = 2− λ.

I Thus, x̄1 is stable if λ ∈ (−1, 1); x̄2 is stable if 1 < λ < 3.

I x̄1 and x̄2 cannot be stable simultaneously.



Logistic map

Figure: Time series (left) and graphical iteration (right) of the logistic
map f(x) = λx(1− x). λ = 0.5, x̄1 = 0 is stable.



Logistic map

Figure: Time series (left) and graphical iteration (right) of the logistic
map f(x) = λx(1− x). λ = 1.25, x̄1 = 0 is unstable, whereas
x̄2 = λ−1

λ = 0.2 is stable.



Logistic map

Figure: Time series (left) and graphical iteration (right) of the logistic
map f(x) = λx(1− x). λ = 3.2, both x̄1 = 0 and x̄2 = λ−1

λ = 0.69 are
unstable. Instead period-2 cycle emerged.



Logistic map: 2-cycle
I To find periodics we need to solve: fn(x) = x. Particularly

we need: f2(x) = x. Let us see this graphically.

Figure: The graph f2(x) has four intersection points with y = x. Two
of them x = 0 and x = 0.69 are common with f(x) = x and not
periodics, but the steady states. Two other points x = 0.51 and
x = 0.8 are the cycle-2 points.



Logistic map: 2-cycle
I Note from the figure, that the derivative |(f2)′(0.51)| < 1

and |(f2)′(0.8)| < 1. Thus, it is a stable 2-cycle.
I Also note that when f ′(x0) < 0 for a steady state x0, the

trajectory jumps around the steady state, be it stable or
unstable. That is, the trajectory does not approach or
leave the steady state from one side. f ′(0.69) < 0 makes a
periodic orbit jump around the steady state, hence, cycle.



Logistic map: 4-cycle

I λ = 3.5



Logistic map: chaos?

I λ = 3.6



Logistic map: chaos?

I λ = 3.8



Logistic map: chaos

I λ = 4.0

I The entire region (0, 1) is covered with points.



Logistic map: diagram



Chaos

I Deterministic chaos is a phenomenon when small
discrepancies in the initial conditions lead to unpredictable
behaviour.

I Importantly: the system stays deterministic (no random
forces exist), although the outcome is somewhat
unpredictable.

I There is no universally accepted definition for chaos, but
the following three conditions must be satisfied:

1. Sensitivity to the initial conditions.
2. Topological mixing: over time any given region overlaps

with any other given region of the phase space.
3. Dense periodic orbits: every point in the space is

approached arbitrarily closely by periodic orbits.

I Chaos can be observed in ODE systems, but the minimal
dimension must be 3.



Chaos: a brief history

I Chaotic regimes were shown in the last half of the 20th
century, although in the turn of the century Henri Poincaré
in his 1903 essay ”Science and Method” wrote:

If we knew exactly the laws of nature and the situation of the universe at the

initial moment, we could predict exactly the situation of that same universe at a

succeeding moment. But even if it were the case that the natural laws had no longer

any secret for us, we could still only know the initial situation approximately. If that

enabled us to predict the succeeding situation with the same approximation, that is all

we require, and we should say that the phenomenon had been predicted, that it is

governed by laws. But it is not always so; it may happen that small differences in the

initial conditions produce very great ones in the final phenomena. A small error in the

former will produce an enormous error in the latter. Prediction becomes impossible,

and we have the fortuitous phenomenon. (the emphasis is mine).

I Edward Lorenz observed chaos in a simple 3D system
(1963).



Lorenz attractor 
x′ = σy − σx
y′ = rx− y − xz
z′ = xy − bz

I Note that the system has only two nonlinear terms.
I Originally the system was intended to model a

meteorological phenomenon.
I Lorenz observed a chaotic attractor for σ = 10, r = 28,
b = 8/3:



Lorenz attractor: sensitivity
I The trajectories seem to rotate around the same two

centers.
I However, any two very closely situated initial points

eventually diverge in time significantly.
I Consider two trajectories originating from two slightly

different initial conditions: P1 = (0,−10.0, 0) and
P2(0,−10.005, 0):



Chaotic attractor

Lorenz attractor is chaotic not because of:

I external random forces (they do not exist in the system)

I infinite number of variables (there are only 3)

I quantum indeterminacy (the system is classical)

Deterministic chaos appears in systems with:

I nonlinear interactions

I instabilities



Stability

I Stability can be determined not only for equilibria, but for
the trajectories in the phase space.

I Stability can be defined differently: according to Lyapunov,
asymptotic stability, according to Poisson.

I Instead of applying small perturbation to the steady state,
we can apply it to any particular solution x0(t) of
x′ = F (x). Thus, we have the perturbation
y(t) = x(t)− x0(t) and y′ = F (x0 + y)− F (x0).

I Note, now we need to look strictly at the time evolution of
the perturbation, not that of the system in a perturbed
state (as we did in the linear analysis of equilibria we had
in Lecture 3, there we could do both).

I By linearizing we get:

y′ = J(t)y ,

J is a Jacobian matrix.



Stability: eigenvalues

I The eigenvalues ρi of Jacobian J can be found from:

|J − ρI| = 0 ,

I is again an identity matrix.

I Thus, the initial perturbation at time t = t0 changes over
time along the eigenvector Vi as follows:

yi(t) = yi(t0)e
(t−t0)ρi

I Re ρi determines increase (Re ρi > 0) or
decrease (Re ρi < 0) in amplitude of the corresponding
perturbation.

I Note that generally Jacobian is a time-dependent matrix
J(t), hence the eigenvalues ρi(t) and eigenvectors Vi(t) are
time-dependent entities too.

I Therefore, yi(t) may be increasing and decreasing at
different points of the given trajectory x0(t).



Lyapunov exponent

I Stability of the small perturbation along the eigenvector Vi
is determined by the Lyapunov characteristic exponent :

λi = lim
t→∞

1

t− t0
ln
|yi(t)|
|yi(t0)|

I N-dimensional system has N Lyapunov exponents for a
given trajectory x0(t), which being arranged from the
biggest to the smallest, form the spectrum of Lyapunov
exponents:

λ1 ≥ λ2 ≥ . . . ≥ λN



Lyapunov exponent: connection with eigenvalues

I It can be shown that

λi = lim
t→∞

1

t− t0

t∫
t0

Re ρi(t
′)dt′

I That is, λi is an averaged along the given trajectory x0(t)
real part of ρi.

I Thus, λi shows how the initial perturbation changes on
average along the trajectory.

I Trajectory x0(t) is stable if on average the initial
perturbation y(t0) does not grow along the given
trajectory. For this to be true, the spectrum of Lyapunov
exponents must not contain positive values.

I Recall chaos is connected with instabilities. Thus, at least
one positive λi is a characteristic sign of chaos.



Maximal Lyapunov exponent (MLE)
I Practically, one calculates Maximal Lyapunov Exponent

(MLE, λ1 in the spectrum). If that is positive, then there
is a chaotic attractor.

I Recall the diagram for the logistic map f(x) = λx(1− x).



Stability of chaotic behaviour
I Regular attractors (steady states, limit cycles) are fully

stable according to Lyapunov or fully unstable.
I This is not so for chaotic attractors. Chaotic trajectory is

unstable at least in one direction, i.e. at least one
Lyapunov exponent is positive (when there are more than
one positive Lyapunov exponent in the spectrum it is said
hyper-chaos).

I Instability and attracting character of the chaotic attractor
do not contradict.

I The initial points tend toward the attractor, but on the
attractor diverge from each other (recall transitivity
property of chaos).

I There is another type of stability — Poisson stability.
Stable according to Poisson indicates the trajectory does
not leave a confined region of the phase space staying there
for arbitrarily long.

I Chaotic trajectory is stable by Poisson, but unstable by
Lyapunov.



Dimension of chaotic attractor
I Strange attractor is characterized by complex geometrical

structure with non-integer dimension.
I The dimension can be assessed via:

DL = j +

j∑
i=1

λi

|λj+1|
,

where j is maximal integer for which λ1 + λ2 + . . .+ λj ≥ 0.
I DL is called Lyapunov dimension.
I DL = 0 for equilibria.
I DL = 1 for limit cycles (oscillations).
I DL = n for n-dimensional tori.
I Regular attractors (equilibria, limit cycles, tori) have DL

equal to the metric dimension and stable by Lyapunov
trajectories on the attractors.

I Chaotic/strange attractor is characterized with non-integer
(Lyapunov) dimension.



Chaos and strange-ness of attractor

I Usually, chaotic and strange, when referring to an
attractor, are interchangeably used, but...

I Not all chaotic attractors are strange (by strange we mean
complex geometrical structure with non-integer dimension,
e.g. Lyapunov dimension).

I There are strange attractors with trajectories stable by
Lyapunov (all λi are non-positive).

I On the other hand, there are regular (non-strange)
attractors with diverging trajectories on them (some λi are
positive).



Summary

I Maps are simpler to simulate and analyze than ODE-based
dynamical systems.

I Maps are capable of producing complex behaviour, like
chaos, for lower dimensions than systems of ODE’s (logistic
map is 1D, Lorenz is 3D).

I Chaotic behaviour is characterized by deterministic law of
evolution and unpredictability. The two seem to be
“incompatible”.

I Lyapunov exponents are the first things to check when
searching for chaos.

I Revise the material in Hirsch et al. book, Chapters
14.1–14.3, 14.5, 15.1–15.4.


