Dynamical Systems and Chaos Part I: Theoretical Techniques

Lecture 4: Discrete systems + Chaos

Ilya Potapov Mathematics Department, TUT Room TD325

KOR SERVER (ER 1990)

Discrete maps

$$
x_{n+1} = f(x_n)
$$

- \triangleright Discrete time steps.
- \triangleright x_0 is a seed of a sequence of numbers x_n produced by the map:

$$
x_0, x_1 = f(x_0), x_2 = f(f(x_0)), x_3 = f(f(f(x_0))), \dots
$$

- \triangleright We denote the *n*-fold composition of the function f with itself as f^n .
- I Thus $x_0, x_1 = f(x_0), x_2 = f^2(x_0), x_3 = f^3(x_0), \ldots$
- Example: $f(x) = 2x + 1$, given $x_0 = 0$. Then the sequence is:

$$
0, 1, 3, 7, 15, 31, 63, \ldots
$$

Advantage: direct iteration of the map instead of finding approximate or exact analytical solu[tio](#page-0-0)[ns.](#page-2-0)

Steady states and periodic orbits

- If x_0 is a steady state, then $f(x_0) = x_0$.
- \blacktriangleright Periodic orbit of *period-n* is an orbit where *n* is the least positive integer for which $f^{(n)}(x_0) = x_0$. Such orbits are also called n-cycles.
- Example: $f(x) = 2x 1$. $x_0 = 1$ is a steady state, since $f(1) = 2 \cdot 1 - 1 = 1.$
- Example: $f(x) = -x^3$. $x_0 = \pm 1$ produce period-2 orbits, since $f(1) = -1, f(-1) = 1$ and $f(-1) = 1, f(1) = -1$.

Visualization of maps

- \triangleright One useful way to visualize the dynamics of maps is to use so called Lamerey diagrams.
- \triangleright One is to draw $y = f(x)$ and the diagonal $y = x$ on the same graph.
- Start with the point (x_0, x_0) on the diagonal.
- If Draw a vertical line up to the graph $y = f(x)$ (this will be point (x_0, x_1) .

- If Draw a horizontal line to the diagonal (point (x_1, x_1)).
- \triangleright Continue iteration.

Graphical iteration

Figure: Examples of the Lamerey diagrams. Trajectory converges to z at the left panel, while it expands (at least for the time steps shown) on the right.

지수는 지금 아이를 지나가고 있다.

Stability of equilibria

- ► Steady states in a discrete dynamical systems can be stable (sink), unstable (source), or neutral.
- If x_0 is a sink-equilibrium (stable), then there exists a neighborhood U in the vicinity of x_0 such that if $y_0 \in \mathbb{U}$, then $f^{n}(y_0) \in \mathbb{U}$ for all n and $f^{n}(y_0) \to x_0$ as $n \to \infty$.
- \triangleright In other words, one can find a region around the equilibrium x_0 , where all points will map to the same region and the mapped values will tend (with number of iterated steps) to the equilibrium x_0 .
- \triangleright For the source-equilibrium x_0 (unstable) all points from within the region around x_0 will tend outside the region with increasing number of iterations.
- \triangleright There are also neutral steady states. This takes place if neither of the above is true.

Stability

- \blacktriangleright Analytically stability of the equilibria can be assessed with:
	- \blacktriangleright x_0 is a sink, if $|f'(x_0)| < 1$.
	- \blacktriangleright x_0 is a source, if $|f'(x_0)| > 1$.
	- if $f'(x_0) = \pm 1$, nothing can be said about the stability of x_0 .

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Stability of periodic orbits

 \triangleright Note that period *n* orbits are fixed points of the operator f^n . In other words, $f^n(x_0) = x_0$.

 \triangleright Thus, one can classify the periodic orbits as sinks or sources depending on whether $|(f^n)'(x_0)| < 1$ or $|(f^n)'(x_0)| > 1$, respectively.

$$
f(x) = \lambda x (1 - x)
$$

• Steady states:
$$
\lambda x(1-x) = x
$$
, so $\bar{x}_1 = 0$ and $\bar{x}_2 = \frac{\lambda - 1}{\lambda}$.

- Stability: $f'(x) = \lambda 2\lambda x$, so $f'(0) = \lambda$, $f'(\frac{\lambda 1}{\lambda})$ $\frac{-1}{\lambda}$) = 2 – λ .
- \triangleright Thus, \bar{x}_1 is stable if $\lambda \in (-1,1)$; \bar{x}_2 is stable if $1 < \lambda < 3$.

KOR & KERKER ADA KON

 \triangleright \bar{x}_1 and \bar{x}_2 cannot be stable simultaneously.

Figure: Time series (left) and graphical iteration (right) of the logistic map $f(x) = \lambda x(1-x)$. $\lambda = 0.5$, $\bar{x}_1 = 0$ is stable.

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ ○ 결 ○

Figure: Time series (left) and graphical iteration (right) of the logistic map $f(x) = \lambda x(1-x)$. $\lambda = 1.25$, $\bar{x}_1 = 0$ is unstable, whereas $\bar{x}_2 = \frac{\lambda - 1}{\lambda} = 0.2$ is stable.

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Figure: Time series (left) and graphical iteration (right) of the logistic map $f(x) = \lambda x(1-x)$. $\lambda = 3.2$, both $\bar{x}_1 = 0$ and $\bar{x}_2 = \frac{\lambda - 1}{\lambda} = 0.69$ are unstable. Instead period-2 cycle emerged.

Logistic map: 2-cycle

 \blacktriangleright To find periodics we need to solve: $f^{(n)}(x) = x$. Particularly we need: $f^2(x) = x$. Let us see this graphically.

Figure: The graph $f^2(x)$ has four intersection points with $y = x$. Two of them $x = 0$ and $x = 0.69$ are common with $f(x) = x$ and not periodics, but the steady states. Two other points $x = 0.51$ and $x = 0.8$ are the cycle-2 points. **A DIA 4 B A DIA A B A DIA 4 DIA A DIA B**

Logistic map: 2-cycle

- \blacktriangleright Note from the figure, that the derivative $|(f^2)'(0.51)| < 1$ and $|(f^2)'(0.8)| < 1$. Thus, it is a stable 2-cycle.
- Also note that when $f'(x_0) < 0$ for a steady state x_0 , the trajectory jumps around the steady state, be it stable or unstable. That is, the trajectory does not approach or leave the steady state from one side. $f'(0.69) < 0$ makes a periodic orbit jump around the steady state, hence, cycle.

 Ω

Logistic map: 4-cycle

 \blacktriangleright $\lambda = 3.5$

イロン イ部ン イ君ン イ君ン 290 重

Logistic map: chaos?

 \blacktriangleright $\lambda = 3.6$

イロメ イ部メ イ君メ イ君メ $2Q$ É

Logistic map: chaos?

 \blacktriangleright $\lambda = 3.8$

K ロ ⊁ K 御 ⊁ K 君 ≯ \equiv $2Q$ Þ

Logistic map: chaos

 $\blacktriangleright \lambda = 4.0$

 \blacktriangleright The entire region $(0, 1)$ is covered with points.

イロメ イ部メ イ君メ イ君メ

 \Rightarrow

Logistic map: diagram

 $2Q$ 4 ロ ▶ 4 伊 ×

n aos

- \triangleright *Deterministic chaos* is a phenomenon when small discrepancies in the initial conditions lead to unpredictable behaviour.
- \blacktriangleright Importantly: the system stays deterministic (no random forces exist), although the outcome is somewhat unpredictable.
- \triangleright There is no universally accepted definition for chaos, but the following three conditions must be satisfied:
	- 1. Sensitivity to the initial conditions.
	- 2. Topological mixing: over time any given region overlaps with any other given region of the phase space.
	- 3. Dense periodic orbits: every point in the space is approached arbitrarily closely by periodic orbits.
- Chaos can be observed in ODE systems, but the minimal dimension must be 3.

Chaos: a brief history

 \triangleright Chaotic regimes were shown in the last half of the 20th century, although in the turn of the century Henri Poincaré in his 1903 essay "Science and Method" wrote:

If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation approximately. If that enabled us to predict the succeeding situation with the same approximation, that is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon. (the emphasis is mine).

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

► Edward Lorenz observed chaos in a simple 3D system (1963).

Lorenz attractor

$$
\begin{cases}\nx' = \sigma y - \sigma x \\
y' = rx - y - xz \\
z' = xy - bz\n\end{cases}
$$

- \triangleright Note that the system has only two nonlinear terms.
- \triangleright Originally the system was intended to model a meteorological phenomenon.
- In Lorenz observed a chaotic attractor for $\sigma = 10$, $r = 28$, $b = 8/3$:

Lorenz attractor: sensitivity

- \triangleright The trajectories seem to rotate around the same two centers.
- ► However, any two very closely situated initial points eventually diverge in time significantly.
- \triangleright Consider two trajectories originating from two slightly different initial conditions: $P_1 = (0, -10.0, 0)$ and $P_2(0, -10.005, 0)$:

 2990

 \equiv

Lorenz attractor is chaotic *not* because of:

 \triangleright external random forces (they do not exist in the system)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

- \triangleright infinite number of variables (there are only 3)
- \triangleright quantum indeterminacy (the system is classical)

Deterministic chaos appears in systems with:

- \blacktriangleright nonlinear interactions
- \blacktriangleright instabilities

Stability

- \triangleright Stability can be determined not only for equilibria, but for the trajectories in the phase space.
- \triangleright Stability can be defined differently: according to Lyapunov, asymptotic stability, according to Poisson.
- \triangleright Instead of applying small perturbation to the steady state, we can apply it to any particular solution $x^0(t)$ of $x' = F(x)$. Thus, we have the perturbation $y(t) = x(t) - x^{0}(t)$ and $y' = F(x^{0} + y) - F(x^{0})$.
- In Note, now we **need** to look strictly at the time evolution of the perturbation, not that of the system in a perturbed state (as we did in the linear analysis of equilibria we had in Lecture 3, there we could do both).
- \triangleright By linearizing we get:

$$
y'=J(t)y,
$$

YO K (FE) (E) ORA

J is a Jacobian matrix.

Stability: eigenvalues

 \blacktriangleright The eigenvalues ρ_i of Jacobian J can be found from:

$$
|J - \rho I| = 0,
$$

I is again an identity matrix.

In Thus, the initial perturbation at time $t = t_0$ changes over time along the eigenvector V_i as follows:

$$
y^{i}(t) = y^{i}(t_0) e^{(t-t_0)\rho_i}
$$

- \blacktriangleright Re ρ_i determines increase (Re $\rho_i > 0$) or decrease (Re ρ_i < 0) in amplitude of the corresponding perturbation.
- \triangleright Note that generally Jacobian is a time-dependent matrix $J(t)$, hence the eigenvalues $\rho_i(t)$ and eigenvectors $V_i(t)$ are time-dependent entities too.
- Interface $y^{i}(t)$ may be increasing and decreasing at different points of the given trajector[y](#page-24-0) $x^0(t)$ $x^0(t)$ $x^0(t)$ $x^0(t)$.

Lyapunov exponent

 \triangleright Stability of the small perturbation along the eigenvector V_i is determined by the Lyapunov characteristic exponent:

$$
\lambda_i = \lim_{t \to \infty} \frac{1}{t - t_0} \ln \frac{|y^i(t)|}{|y^i(t_0)|}
$$

 \triangleright N-dimensional system has N Lyapunov exponents for a given trajectory $x^0(t)$, which being arranged from the biggest to the smallest, form the spectrum of Lyapunov exponents:

$$
\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N
$$

Lyapunov exponent: connection with eigenvalues

 \blacktriangleright It can be shown that

$$
\lambda_i = \lim_{t \to \infty} \frac{1}{t - t_0} \int_{t_0}^t \text{Re}\,\rho_i(t')dt'
$$

- \blacktriangleright That is, λ_i is an averaged along the given trajectory $x^0(t)$ real part of ρ_i .
- If Thus, λ_i shows how the initial perturbation changes on average along the trajectory.
- \blacktriangleright Trajectory $x^0(t)$ is stable if on average the initial perturbation $y(t_0)$ does not grow along the given trajectory. For this to be true, the spectrum of Lyapunov exponents must not contain positive values.
- \triangleright Recall chaos is connected with *instabilities*. Thus, at least one positive λ_i is a characteristic sign of chaos.

Maximal Lyapunov exponent (MLE)

- ▶ Practically, one calculates Maximal Lyapunov Exponent (MLE, λ_1 in the spectrum). If that is positive, then there is a chaotic attractor.
- Recall the diagram for the logistic map $f(x) = \lambda x(1-x)$.

Stability of chaotic behaviour

- \triangleright Regular attractors (steady states, limit cycles) are fully stable according to Lyapunov or fully unstable.
- \triangleright This is not so for chaotic attractors. Chaotic trajectory is unstable at least in one direction, i.e. at least one Lyapunov exponent is positive (when there are more than one positive Lyapunov exponent in the spectrum it is said hyper-chaos).
- \triangleright Instability and attracting character of the chaotic attractor do not contradict.
- \triangleright The initial points tend toward the attractor, but on the attractor diverge from each other (recall transitivity property of chaos).
- \triangleright There is another type of stability Poisson stability. Stable according to Poisson indicates the trajectory does not leave a confined region of the phase space staying there for arbitrarily long.
- \triangleright Chaotic trajectory is stable by Poisson, but unstable by **K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q OK** Lyapunov.

Dimension of chaotic attractor

- \triangleright Strange attractor is characterized by complex geometrical structure with non-integer dimension.
- \triangleright The dimension can be assessed via:

$$
D_L = j + \frac{\sum_{i=1}^{j} \lambda_i}{|\lambda_{j+1}|},
$$

where j is maximal integer for which $\lambda_1 + \lambda_2 + \ldots + \lambda_j \geq 0$.

- \triangleright D_L is called Lyapunov dimension.
- $D_L = 0$ for equilibria.
- $D_L = 1$ for limit cycles (oscillations).
- $D_L = n$ for *n*-dimensional tori.
- \blacktriangleright Regular attractors (equilibria, limit cycles, tori) have D_L equal to the metric dimension and stable by Lyapunov trajectories on the attractors.
- \triangleright Chaotic/strange attractor is characterized with non-integer (Lyapunov) dimension.

Chaos and strange-ness of attractor

- If Usually, *chaotic* and *strange*, when referring to an attractor, are interchangeably used, but...
- \triangleright Not all chaotic attractors are strange (by strange we mean complex geometrical structure with non-integer dimension, e.g. Lyapunov dimension).
- \triangleright There are strange attractors with trajectories stable by Lyapunov (all λ_i are non-positive).
- \triangleright On the other hand, there are regular (non-strange) attractors with diverging trajectories on them (some λ_i are positive).

A DIA 4 BIA 4 BIA 1 BIA 4 DIA 4 BIA

Summary

- ^I Maps are simpler to simulate and analyze than ODE-based dynamical systems.
- \triangleright Maps are capable of producing complex behaviour, like chaos, for lower dimensions than systems of ODE's (logistic map is 1D, Lorenz is 3D).
- \triangleright Chaotic behaviour is characterized by *deterministic* law of evolution and unpredictability. The two seem to be "incompatible".

A DIA 4 BIA 4 BIA 1 BIA 4 DIA 4 BIA

- \triangleright Lyapunov exponents are the first things to check when searching for chaos.
- \triangleright Revise the material in Hirsch et al. book, Chapters 14.1–14.3, 14.5, 15.1–15.4.