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Conservative and dissipative

I Any system can be classified as conservative or dissipative.

I Conservative systems have constant entities (usually,
energy). Physically we mean systems with no influx and no
production of energy/matter (Note that it is possible to
construct a system with a constant entity, but with influx
of energy and/or matter).

I Dissipative systems lose energy with time. In order to
maintain persistent behaviours the dissipative system must
have influx of energy/matter.

I There are many systems (especially, from classical physics)
that are conservative.

I Biological systems are always dissipative, thus we focus on
the dissipative systems in this course.

I But we need to stress important differences.



Hamiltonian systems

I Hamiltonian systems are the special type of dynamical
systems arising in classical mechanics.

I We consider planar Hamiltonian systems of the form:
x′ =

∂H

∂y
(x, y)

y′ = −∂H
∂x

(x, y)

where H(x, y) is a Hamiltonian function.

I Hamiltonian function is a constant of motion, that is
H(x, y) is constant along every solution of the system:
Ḣ ≡ 0 as:

Ḣ =
∂H

∂x
x′ +

∂H

∂y
y′ =

∂H

∂x

∂H

∂y
+
∂H

∂y

(
−∂H
∂x

)
= 0



Some examples

I Harmonic oscillator {
x′ = y

y′ = −kx

I The Hamiltonian function of the system above is:

H(x, y) =
1

2
y2 +

k

2
x2.

I Ideal pendulum {
θ′ = ν

ν ′ = − sin θ

I The total energy is a Hamiltonian of the system:

H(θ, ν) =
1

2
ν2 + 1− cos θ.



Hamiltonian systems are conservative

I Note that Hamiltonian functions define energy of a
mechanical system, hence, the Hamiltonian systems are
truly conservative systems.

I Note also that there are infinite number of functions
H(x, y), since a constant added to it does not change the
condition Ḣ(x, y) = 0.

I Thus, the levels H(x, y) = Constant represent motion with
different constant energy.

I If we assume that H is not constant on any open set, we
just plot curves H(x, y) = Constant and the solutions of
the Hamiltonian system with H = H(x, y) lie on the drawn
levels.

I Thus, we need not solve the system analytically or
numerically.



Example

I Consider the system: {
x′ = y

y′ = −x3 + x

with Hamiltonian H(x, y) =
x4

4
− x2

2
+
y2

2
.

I The linearized system is: X ′ =

(
0 1

1− 3x2 0

)
X

I The steady states of the system are: (0, 0), (±1, 0).

I The eigenvalues for the origin (0, 0) are ±1 (saddle), for the
(±1, 0) — ±

√
2i (center).

I NOTE: the Hamiltonian systems can only have saddles and
centers as their equilibrium points.



Example (continued)
I Let us plot the levels of the Hamiltonian

H(x, y) =
x4

4
− x2

2
+
y2

2
and the vector field.



Example (continued)
I A constant added to H(x, y) does not change the solutions

(vector field), reflecting the fact that the potential energy
of a physical system depends on the reference measure.

I Solutions are the lines along the surface with the fixed
z-stack = H(x, y).



Attractors

I So far we have encountered several types of attractors:
equilibrium points, limit cycles, and strange attractor (for
the chaotic dynamics).

I Attractor is an invariant set where points of the phase
space tend to either in forward or backward time.

I The sub-region of the phase space starting from which
points evolve to eventually reach an attractor, is called
basin of attraction (obviously, when there is a single
attractor, the whole available phase space is its basin of
attraction).

I We talk about volume of the phase space occupied by the
attractor and the phase volume occupied by its basin of
attraction.

I For example, an equilibrium point has zero phase volume,
but its basin of attraction is presumably a larger set with
non-zero phase volume.



Phase volume

I A set of initial points occupies phase volume V (0). It
evolves over time so that at time t volume is V (t).

I For a Hamiltonian system V (t) = V (0), that is the volume
is preserved.

I The initial set can be shrinked in one direction, but this is
ultimately accompanied with extension in other
directions (Hamiltonian systems).

I Deformations of the initial set can occur, but the phase
volume is preserved (Hamiltonian systems).

I For a dissipative system V (t) < V (0).



Phase volume in Hamiltonian systems



Phase volume in dissipative systems



Phase volume and attractors
I Attractors assume non-zero volume basins of attraction

(although there is no universal definition of an attractor).
I If so, Hamiltonian systems do not have attractors, since

any initial point is already on the final invariant set (that is
the point will be revisited again in time).

I Dissipative systems do have attractors, since they undergo
compression of the phase volume.

I If we separate attractors from basins of attraction in the
definition of attractor, then Hamiltonian systems can also
be said to have attractors.

I If a dissipative system starts at its stable equilibrium point,
it stays there for arbitrarily long and one cannot see the
basin of attraction and compression of the volume. It is
already on the attractor.

I Similarly a Hamiltonian system can be understood this
way. Any initial point is already on an attractor (and there
is inifinite number of them, corresponding to different
levels H(x, y) = Constant).



Phase volume and Lyapunov exponents

I The average divergence div of the vector field F (x(t))
determines the evolution of the phase volume:

V (t) = V (t0) exp [(t− t0)divF (x(t))]

I It can be shown, that the sum of Lyapunov exponents can
be expressed through the divergence:

N∑
i=1

λi = lim
t→∞

1

t− t0

t∫
t0

divF (t′)dt′

I If the compression of the phase volume takes place, the
divergence is negative and:

N∑
i=1

λi < 0



Example 1

I Ideal harmonic oscillator (ẍ+ k
mx = 0):x′ = y

y′ = − k
m
x

I Eigenvalues ρ1,2 = ±
√
k

m
i. Center.

I The Lyapunov spectrum: λ1 = λ2 = 0⇒
∑
λi = 0.

I No phase volume compression, no dissipation, no attractor.

I It is a classical Hamiltonian system with

H(x, y) =
1

2
y2 +

k

2m
x2



Example 2

I Harmonic oscillator with friction (ẍ+ b
m ẋ+ k

mx = 0):x′ = y

y′ = − k
m
x− b

m
y

I Note b, k, m all positive (physical constants).

I Eigenvalues ρ1,2 =
− b

m ±
√(

b
m

)2 − 4 k
m

2
.

I If
(

b
m

)2 ≥ 4 k
m ⇒ 0 ≤

√(
b
m

)2 − 4 k
m ≤

b
m ⇒ ρ1,2 < 0. Stable

node.

I If
(

b
m

)2
< 4 k

m ⇒ ρ1,2 = − b
2m ±

√
( b
m
)2−4 k

m

2 i. Stable focus
(damped oscillations).



Example 2 (continued)

I k = m = 1.

I b = 2.1⇒ stable node.

I b = 0.4⇒ damped oscillations (stable focus).



Example 2 (continued)

I k = m = 1, b = 2.1: Lyapunov spectrum: λ1 = −0.70,
λ2 = −1.40,

∑
λi = −2.10 < 0, Lyapunov dimension

DL = 0.

I k = m = 1, b = 0.4⇒: Lyapunov spectrum:
λ1 = λ2 = −0.20,

∑
λi = −0.40 < 0, Lyapunov dimension

DL = 0.

I The system demonstrates phase volume compression, i.e.
dissipation (

∑
λi < 0).

I Lyapunov dimension DL = 0 (regular attractor, i.e. no
complex geometrical structure since
DL = metric dimension).



Example 3

I Brusselator is “chemical” oscillator containing true
non-linear oscillations, corresponding to the limit cycle
attractor.

I Brusselator is modeled using the following equations:{
x′ = A+ x2y − (B + 1)x

y′ = Bx− x2y

I In the oscillatory regime (A = 1, B = 3) the Lyapunov
spectrum is: λ1 = −0.001 (in theory this must be zero),
λ2 = −1.21⇒

∑
λi = −1.21. Lyapunov dimension

DL = 1 + 0
1.21 = 1.

I There is dissipation. Regular attractor since the limit
cycle’s metric dimension is 1D (line).



Example 4

I Lorenz system: 
x′ = σ(y − x)

y′ = ρx− y − xz
z′ = xy − βz

where σ = 16, ρ = 45.92, β = 4

I Lyapunov spectrum: λ1 = 1.50, λ2 = −0.002 (zero),
λ3 = −22.50⇒

∑
λi ≈ −21.0

I Lyapunov dimension DL ≈ 2.07.

I There is dissipation with chaos (one λi is positive).

I Attractor is strange (non-integer DL).



Lyapunov Exponents Toolbox (LET)

I LET demo.



Summary

I Hamiltonian systems are important subclass of
conservative dynamical systems.

I Biological dynamical systems are dissipative (as opposed to
conservative systems), i.e. they have energy/matter losses.

I Dissipation can be assessed by Lyapunov exponents.


