Dynamical Systems and Chaos Part I: Theoretical Techniques

Lecture 5: Hamiltonian vs. dissipative systems

Ilya Potapov Mathematics Department, TUT Room TD325

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Conservative and dissipative

- \blacktriangleright Any system can be classified as *conservative* or *dissipative*.
- \triangleright Conservative systems have constant entities (usually, energy). Physically we mean systems with no *influx* and no production of energy/matter (Note that it is possible to construct a system with a constant entity, but with influx of energy and/or matter).
- \triangleright Dissipative systems lose energy with time. In order to maintain persistent behaviours the dissipative system must have influx of energy/matter.
- \triangleright There are many systems (especially, from classical physics) that are conservative.
- ► Biological systems are always dissipative, thus we focus on the dissipative systems in this course.
- ▶ But we need to stress important differences.

Hamiltonian systems

- \blacktriangleright Hamiltonian systems are the special type of dynamical systems arising in classical mechanics.
- \triangleright We consider planar Hamiltonian systems of the form:

$$
\left\{ \begin{aligned} x' &= \frac{\partial H}{\partial y}(x, y) \\ y' &= -\frac{\partial H}{\partial x}(x, y) \end{aligned} \right.
$$

where $H(x, y)$ is a Hamiltonian function.

 \blacktriangleright Hamiltonian function is a *constant of motion*, that is $H(x, y)$ is constant along every solution of the system: $H = 0$ as:

$$
\dot{H} = \frac{\partial H}{\partial x}x' + \frac{\partial H}{\partial y}y' = \frac{\partial H}{\partial x}\frac{\partial H}{\partial y} + \frac{\partial H}{\partial y}\left(-\frac{\partial H}{\partial x}\right) = 0
$$

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

Some examples

 \blacktriangleright Harmonic oscillator

$$
\begin{cases}\nx' = y \\
y' = -kx\n\end{cases}
$$

- \blacktriangleright The Hamiltonian function of the system above is: $H(x, y) = \frac{1}{2}y^2 + \frac{k}{2}$ $rac{\kappa}{2}x^2$.
- \blacktriangleright Ideal pendulum

$$
\begin{cases} \theta' = \nu \\ \nu' = -\sin \theta \end{cases}
$$

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 「重 │ め Q Q 〉

 \blacktriangleright The total energy is a Hamiltonian of the system: $H(\theta, \nu) = \frac{1}{2}\nu^2 + 1 - \cos \theta.$

Hamiltonian systems are conservative

- \triangleright Note that Hamiltonian functions define energy of a mechanical system, hence, the Hamiltonian systems are truly conservative systems.
- \triangleright Note also that there are infinite number of functions $H(x, y)$, since a constant added to it does not change the condition $H(x, y) = 0$.
- In Thus, the levels $H(x, y) = Constant$ represent motion with different constant energy.
- If we assume that H is not constant on any open set, we just plot curves $H(x, y) = Constant$ and the solutions of the Hamiltonian system with $H = H(x, y)$ lie on the drawn levels.

ADD REAR ARD ADD ADD

 \triangleright Thus, we need not solve the system analytically or numerically.

Consider the system:

$$
\begin{cases}\nx' = y \\
y' = -x^3 + x\n\end{cases}
$$

with Hamiltonian $H(x, y) = \frac{x^4}{4}$ $\frac{x^4}{4} - \frac{x^2}{2}$ $\frac{x^2}{2} + \frac{y^2}{2}$ $\frac{1}{2}$.

- The linearized system is: $X' = \begin{pmatrix} 0 & 1 \\ 1 & 2x^2 & 0 \end{pmatrix}$ $1 - 3x^2$ 0 $\big)$ x
- \blacktriangleright The steady states of the system are: $(0,0), (\pm 1,0)$.
- Figure 1 The eigenvalues for the origin $(0,0)$ are ± 1 (saddle), for the $(\pm 1, 0)$ — $\pm \sqrt{2}i$ (center).
- \triangleright NOTE: the Hamiltonian systems can only have saddles and centers as their equilibrium points.

Example (continued)

 \triangleright Let us plot the levels of the Hamiltonian $H(x,y) = \frac{x^4}{4}$ $\frac{x^4}{4} - \frac{x^2}{2}$ $\frac{x^2}{2} + \frac{y^2}{2}$ $\frac{y}{2}$ and the vector field.

 Ω

Example (continued)

- A constant added to $H(x, y)$ does not change the solutions (vector field), reflecting the fact that the potential energy of a physical system depends on the reference measure.
- Solutions are the lines along the surface with the fixed z-stack = $H(x, y)$.

 2990

Attractors

- \triangleright So far we have encountered several types of attractors: equilibrium points, limit cycles, and strange attractor (for the chaotic dynamics).
- \blacktriangleright Attractor is an invariant set where points of the phase space tend to either in forward or backward time.
- \triangleright The sub-region of the phase space starting from which points evolve to eventually reach an attractor, is called basin of attraction (obviously, when there is a single attractor, the whole available phase space is its basin of attraction).
- \triangleright We talk about *volume* of the phase space occupied by the attractor and the phase volume occupied by its basin of attraction.
- \triangleright For example, an equilibrium point has zero phase volume, but its basin of attraction is presumably a larger set with non-zero phase volume.

Phase volume

- \triangleright A set of initial points occupies phase volume $V(0)$. It evolves over time so that at time t volume is $V(t)$.
- \blacktriangleright For a *Hamiltonian* system $V(t) = V(0)$, that is the volume is preserved.
- \triangleright The initial set can be shrinked in one direction, but this is ultimately accompanied with extension in other directions (Hamiltonian systems).
- Deformations of the initial set can occur, but the phase volume is preserved (Hamiltonian systems).

 \blacktriangleright For a *dissipative* system $V(t) < V(0)$.

Phase volume in Hamiltonian systems

K ロ ▶ K 御 ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Phase volume in dissipative systems

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Phase volume and attractors

- \triangleright Attractors assume non-zero volume basins of attraction (although there is no universal definition of an attractor).
- \triangleright If so, Hamiltonian systems do *not* have attractors, since any initial point is already on the final invariant set (that is the point will be revisited again in time).
- \triangleright Dissipative systems do have attractors, since they undergo compression of the phase volume.
- \triangleright If we separate attractors from basins of attraction in the definition of attractor, then Hamiltonian systems can also be said to have attractors.
- If a dissipative system starts at its stable equilibrium point, it stays there for arbitrarily long and one cannot see the basin of attraction and compression of the volume. It is already on the attractor.
- \triangleright Similarly a Hamiltonian system can be understood this way. Any initial point is already on an attractor (and there is inifinite number of them, corresponding to different levels $H(x, y) = Constant$. K □ ▶ K @ ▶ K 할 X K 할 X 및 할 X 9 Q Q ·

Phase volume and Lyapunov exponents

In The average divergence div of the vector field $F(x(t))$ determines the evolution of the phase volume:

$$
V(t) = V(t_0) \exp [(t - t_0)divF(x(t))]
$$

 \triangleright It can be shown, that the sum of Lyapunov exponents can be expressed through the divergence:

$$
\sum_{i=1}^{N} \lambda_i = \lim_{t \to \infty} \frac{1}{t - t_0} \int_{t_0}^{t} div F(t') dt'
$$

If the compression of the phase volume takes place, the divergence is negative and:

$$
\sum_{i=1}^{N} \lambda_i < 0
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Ideal harmonic oscillator $(\ddot{x} + \frac{k}{n})$ $\frac{\kappa}{m}x=0$:

$$
\begin{cases}\nx' = y \\
y' = -\frac{k}{m}x\n\end{cases}
$$

- Eigenvalues $\rho_{1,2} = \pm$ \sqrt{k} $\frac{n}{m}$ *i*. Center.
- The Lyapunov spectrum: $\lambda_1 = \lambda_2 = 0 \Rightarrow \sum \lambda_i = 0$.
- No phase volume compression, no dissipation, no attractor.
- \triangleright It is a classical Hamiltonian system with

$$
H(x,y) = \frac{1}{2}y^2 + \frac{k}{2m}x^2
$$

KOR & KERKER ADA KON

I Harmonic oscillator with friction $(\ddot{x} + \frac{b}{m})$ $\frac{b}{m}\dot{x} + \frac{k}{m}$ $\frac{\kappa}{m}x=0$:

$$
\begin{cases}\nx' = y \\
y' = -\frac{k}{m}x - \frac{b}{m}y\n\end{cases}
$$

 \blacktriangleright Note b, k, m all positive (physical constants).

\n- Eigenvalues
$$
\rho_{1,2} = \frac{-\frac{b}{m} \pm \sqrt{\left(\frac{b}{m}\right)^2 - 4\frac{k}{m}}}{2}
$$
.
\n- ▶ If $\left(\frac{b}{m}\right)^2 \geq 4\frac{k}{m} \Rightarrow 0 \leq \sqrt{\left(\frac{b}{m}\right)^2 - 4\frac{k}{m}} \leq \frac{b}{m} \Rightarrow \rho_{1,2} < 0$. Stable node.
\n- ▶ If $\left(\frac{b}{m}\right)^2 < 4\frac{k}{m} \Rightarrow \rho_{1,2} = -\frac{b}{2m} \pm \frac{\sqrt{\left(\frac{b}{m}\right)^2 - 4\frac{k}{m}}}{2}$. Stable focus
\n

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

(damped oscillations).

Example 2 (continued)

- $\blacktriangleright k = m = 1.$
- \blacktriangleright $b = 2.1 \Rightarrow$ stable node.
- \blacktriangleright $b = 0.4 \Rightarrow$ damped oscillations (stable focus).

Example 2 (continued)

- $\blacktriangleright k = m = 1, b = 2.1$: Lyapunov spectrum: $\lambda_1 = -0.70$, $\lambda_2 = -1.40$, $\sum \lambda_i = -2.10 < 0$, Lyapunov dimension $D_L = 0.$
- $\blacktriangleright k = m = 1, b = 0.4 \Rightarrow$: Lyapunov spectrum: $\lambda_1 = \lambda_2 = -0.20$, $\sum \lambda_i = -0.40 < 0$, Lyapunov dimension $D_L = 0.$
- \triangleright The system demonstrates phase volume compression, i.e. dissipation ($\sum \lambda_i < 0$).
- I Lyapunov dimension $D_L = 0$ (regular attractor, i.e. no complex geometrical structure since D_L = metric dimension).

- ^I Brusselator is "chemical" oscillator containing true non-linear oscillations, corresponding to the *limit cycle* attractor.
- \triangleright Brusselator is modeled using the following equations:

$$
\begin{cases}\nx' = A + x^2y - (B+1)x \\
y' = Bx - x^2y\n\end{cases}
$$

- In the oscillatory regime $(A = 1, B = 3)$ the Lyapunov spectrum is: $\lambda_1 = -0.001$ (in theory this must be zero), $\lambda_2 = -1.21 \Rightarrow \sum \lambda_i = -1.21$. Lyapunov dimension $D_L = 1 + \frac{0}{1.21} = 1.$
- \triangleright There is dissipation. Regular attractor since the limit cycle's metric dimension is 1D (line).

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

 \blacktriangleright Lorenz system:

$$
\begin{cases}\nx' = \sigma(y - x) \\
y' = \rho x - y - xz \\
z' = xy - \beta z\n\end{cases}
$$

KOR & KERKER ADA KON

where $\sigma = 16$, $\rho = 45.92$, $\beta = 4$

- \blacktriangleright Lyapunov spectrum: $\lambda_1 = 1.50, \lambda_2 = -0.002$ (zero), $\lambda_3 = -22.50 \Rightarrow \sum \lambda_i \approx -21.0$
- ► Lyapunov dimension $D_L \approx 2.07$.
- There is dissipation with chaos (one λ_i is positive).
- Attractor is strange (non-integer D_L).

Lyapunov Exponents Toolbox (LET)

 \blacktriangleright LET demo.

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Summary

- ► Hamiltonian systems are important subclass of conservative dynamical systems.
- \triangleright Biological dynamical systems are dissipative (as opposed to conservative systems), i.e. they have energy/matter losses.

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

▶ Dissipation can be assessed by Lyapunov exponents.