Dynamical Systems and Chaos Part II: Biology Applications

Lecture 6: Population dynamics

Ilya Potapov Mathematics Department, TUT Room TD325

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Living things are dynamical systems

- ▶ Dynamical systems theory can be applied to a very broad range of phenomena.
- ▶ Biological systems are not exceptions.
- \triangleright However, they possess certain properties that must be accounted for:
	- 1. Complex systems: many components, spatial organization etc. Aggregated approach (population dynamics) or detailed modelling.
	- 2. Systems with reproduction: auto-catalytic characteristics. Tendency to avoid global equilibrium.
	- 3. Open system: always interact with the environment by interchanging matter and energy.

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

4. Hierarchy of regulation: regulated by the complex multi-level regulatory mechanisms.

- If Usually positive variables $X > 0$ (exceptions: e.g., electrical potentials).
- \triangleright Positive parameters (if not complex, e.g. $r = R S$, reproduction R vs. senescence S).
- \blacktriangleright Highly nonlinear systems.
- \triangleright Different time scales.
- In Many component systems (\Rightarrow inevitable approximation of reality).

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Ecological Population

- \triangleright Population is a group of organisms (belonging to the same species) that live together in the same habitat (ecological niche) and can interbreed.
- \triangleright Populations are usually described by a number, its *density*. Thus an ODE (1D) can describe the population dynamics.
- \blacktriangleright However, there can be more complex models with separate dynamical laws for different sub-groups, sorted, for instance, by age (2D, 3D etc).

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

Individual based models (usually, not ODE's).

Population dynamics

- \blacktriangleright The density of a population changes over time.
- \blacktriangleright The primary sources for the change are:
	- \triangleright Births (natality)
	- \blacktriangleright Deaths (mortality)
	- \blacktriangleright Immigration (influx)
	- \blacktriangleright Emigration (outflux)

Change in Density = $(Births + Immigration) - (Deaths + Emigration)$

- \triangleright There are other impacts (biotic and abiotic) on the density—secondary ecological events:
	- ▶ Density-independent: climate conditions, high temperature, low humidity etc.

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

 \triangleright Density-dependent: predation, parasitism, contagious disease.

The model of exponential (unlimited) growth.

$$
\frac{dx}{dt} = rx,
$$

where $r = R - S$, R – reproduction rate (natality), S – senescence rate (mortality).

The solution of the exponential growth model is:

$$
x(t) = C_0 e^{rt},
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

 C_0 is a constant.

Malthus model dynamics

Figure: The dynamics of the Malthus model depending on the coefficient r for a single initial condition.

K ロ ▶ | K 御 ▶ | K 聖 ▶ | K 聖 ▶ | | 重 299 The growth of a population with the limitation

$$
\frac{dx}{dt} = rx\left(1 - \frac{x}{K}\right),\,
$$

where K and r are positive constants. The solution of the equation is:

$$
x(t) = \frac{x_0 K e^{r \cdot t}}{K - x_0 + x_0 e^{r \cdot t}},
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

where x_0 is the initial condition, i.e. $x_0 = x(t = 0)$.

Verhulst model dynamics

Figure: The Verhulst equation dynamics depending on the intial conditions x_0 . $K = 1$, $r = 1$.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q ○

Verhulst equation

- \blacktriangleright The equation has two important properties:
	- 1. for small x it demonstrates the exponential growth.
	- 2. for large x it reaches the limit K .
- \blacktriangleright K is the environmental carrying capacity (food resources, space limit etc.)
- The equation has $-\frac{r}{k}$ $\frac{r}{K}x^2$ term reflecting the intraspecific competition.
- \triangleright As the density grows, the intraspecific competition becomes more intensive, resulting in mortality increase and natality drop.

r-selection

- \triangleright Opportunist strategy: exploitation of unstable environments and transient resources.
- \triangleright r-species produce lots of offsprings in a short space of time, rapidly disperse into new habitats as conditions become unfavorable.
- \triangleright Short life cycle, small body size, high mobility, high reproduction rate r (hence r -strategy).

K-selection

- \triangleright Stable habitats, long life cycles, larger body size, low growth rate.
- \triangleright Pressure is on the intraspecific competition and efficient use of resources, i.e. focus on $-\frac{r}{k}$ $\frac{r}{K}x^2$ term.

Evidence

- \triangleright Unlimited growth (e.g. Malthus model): none, except for the initial stages of growth, which is captured by the Logistic equation too.
- \triangleright Growth with limitation (e.g. Logistic equation):

 Ω

- Integration Linear growth terms $(\propto r \cdot x)$ correspond to unisexual populations (Logistic and Malthus models).
- \triangleright *Paramecium* populations (shown above) can reproduce and propagate alone: by simple division of a cell into two daughter cells. Each daughter cell becomes a distinct individual.
- \triangleright The growth of **bisexual** populations is better described with quadratic terms, i.e. $\propto r \cdot x^2$, since two individuals must meet in order to interbreed (syngenesis).

Populations with syngenesis

1. Growth of a population with 2 distinct sexes. The reproduction takes place only when two individuals meet. Individuals can be still described by one variable.

$$
x' = rx^2
$$

2. At higher population density the number of female individuals becomes a limitation. This could be reflected with the limitation denominator:

$$
x' = \frac{\alpha x^2}{\beta + \tau x}
$$

3. The same population with the senescence. This helps to account for the critical mass in the population.

$$
x' = \frac{\alpha x^2}{\beta + \tau x} - d_s x
$$

4. Finally, the intra-species competition gives the limitation on the higher scale, i.e. population size does not blow up to the infinity.

$$
x' = \frac{\alpha x^2}{\beta + \tau x} - d_s x - \delta x^2
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Discrete population models

- \triangleright Population size changes rather at discrete steps than continously over time.
- \triangleright General form for the model with evolution operator F_t that is depedent on k states at the previous time moments:

$$
N_t = F_t(N_{t-1}, N_{t-2}, \dots, N_{t-k})
$$

 \triangleright One generation determines completely the other (e.g. insects with fast development, zoo-plankton, fish, birds). Generations do not overlap.

$$
N_{t+1} = F_t(N_t)
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Discrete Logistic map

 \triangleright Recall the Logistic equation:

$$
\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)
$$

- ► Let's arrange a substitute: $dN \leftarrow N_{t+1} N_t$ and $dt = 1$ (timestep is 1 year, month, day etc.)
- \triangleright The discrete Logistic equation becomes:

$$
N_{t+1} = N_t \left[1 + r \left(1 - \frac{N_t}{K} \right) \right]
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Biological reformulation of the Logistic map

- \triangleright For some N_t the RHS of the map becomes negative. Namely, for $N_t > \frac{1+r}{r}K$ the next value N_{t+1} becomes negative.
- Thus, the the RHS was proposed to be changed by some authors:

$$
N_{t+1} = N_t \exp\left[r\left(1 - \frac{N_t}{K}\right)\right]
$$

 \triangleright This new form of the map was successfully applied to some species of fish and insects.

- One can see the solution course by the Lamerey Diagram.
- In The diagram is the plot of $N_{t+1} = F(N_t)$ vs. N_t
- \triangleright Solution is any sequence $\{N_t\}, t = 0, 1, \dots$ satisfying the map.
- If Steady state is a solution of the form: $N_t = Const = N^*$, where $N^* = F(N^*)$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q OK

If Steady state solution does not change from t to $t + 1$ implying for our equation:

$$
\exp\left\{r\left(1-\frac{N^*}{K}\right)\right\}=1
$$

 \triangleright So, the solution is:

$$
N^* = K
$$

 \triangleright One single positive solution, which, thus, has the biological meaning of the capacity (or the growth limit) of the population.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Stability of the solution

 \blacktriangleright Applying small perturbation x_t to the stationary solution N^* we can eventually obtain formula of the linearized system:

$$
x_{t+1} = \left(\frac{dF}{dN}\right)_{N=N^*} \cdot x_t + O(x_t^2)
$$

- \triangleright This is the geometric series with common ratio of $\left(\frac{dF}{dN}\right)_{N=N^*}$
- \blacktriangleright The common ratio:

i.

$$
\frac{dF}{dN} = \exp\left\{r\left(1 - \frac{N}{K}\right)\right\} - \frac{rN\exp\left\{r\left(1 - \frac{N}{K}\right)\right\}}{K}
$$

$$
\left(\frac{dF}{dN}\right)_{N=N^*} = 1 - r
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q OK

▶ From the convergence of the geometric series, solution $N^* = K$ is stable if:

 $|1 - r| < 1$

 \triangleright And the solution is unstable if:

 $|1 - r| > 1$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q OK

Solutions of the Logistic Map

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Solutions of the Logistic Map

 $2Q$ (ロ) (個) (重) Þ Þ

Interaction of two species: Lotka equations

- \blacktriangleright Predator-prey system (e.g. hares x and wolves y).
- \blacktriangleright Hares have non-limited food source and reproduct at constant rate k_0 .
- \blacktriangleright Hares die when meet with wolves, which is proportional to xy. Wolves grow and reproduct due these meeting events.
- \blacktriangleright Wolves die proportional to y.

$$
\begin{cases}\n\frac{dx}{dt} = k_0 - k_1 xy \\
\frac{dy}{dt} = k_1 xy - k_2 y\n\end{cases}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

 \triangleright Steady state is:

$$
\bar{x} = \frac{k_2}{k_1} \wedge \bar{y} = \frac{k_0}{k_2}
$$

 \triangleright Roots of the characteristic equation:

$$
\lambda_{1,2} = \frac{-k_1 k_0 \pm \sqrt{(k_1 k_0)^2 - 4k_1 k_0 k_2^2}}{2k_2}
$$

- ► Re $\lambda_{1,2}$ < 0 \Rightarrow always stable steady state.
- If $k_1 k_0 \geq 4k_2^2$ stable sink. If otherwise the steady state is stable focus.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Lotka equations

 2990 ŧ

- \triangleright Similar to Lotka equations.
- But hares grow linearly $\epsilon_x x$ on the unlimited food supply.

$$
\begin{cases}\n\frac{dx}{dt} = x(\epsilon_x - \gamma_x y) \\
\frac{dy}{dt} = -y(\epsilon_y - \gamma_y x)\n\end{cases}
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q OK

Dynamics of the Volterra equations

 \blacktriangleright Steady states are:

$$
\begin{cases} \bar{x} = 0 \\ \bar{y} = 0 \end{cases} \vee \begin{cases} \bar{x} = \frac{\epsilon_y}{\gamma_y} \\ \bar{y} = \frac{\epsilon_x}{\gamma_x} \end{cases}
$$

 \triangleright Roots of the characteristic equation for the nonzero solution:

$$
\lambda_{1,2} = \pm i \sqrt{\epsilon_x \epsilon_y}
$$

- \triangleright Steady state type is center = oscillations, depending on the initial conditions. But this is a nonlinear equation!
- \triangleright Thus, no conclusion can be drawn from the linear analysis.
- \blacktriangleright However, one can show that ther is a *constant entity* along the solution lines of the system (constant of motion).

Constant of motion in the Volterra equations

If we integrate without time: $\frac{dy}{dx} = -\frac{y(\epsilon_y - \gamma_y x)}{x(\epsilon_x - \gamma_x y)}$ $x(\epsilon_x - \gamma_x y)$

 \blacktriangleright We will see the constant entity K to be:

$$
K = \epsilon_x \ln y + \epsilon_y \ln x - \gamma_x y - \gamma_y x
$$

 \triangleright Like in Hamiltonian systems we just need to plot levels of the constant of motion K.

Contour plot for $\epsilon_x = 1, \gamma_x = \gamma_y = 0.1, \epsilon_y = 0.1$: 35 30 25 > 20 15 10 5 5 $\frac{10}{x}$ 15

Volterra equations: simulation

Simulations for $\epsilon_x = 1, \gamma_x = \gamma_y = 0.1, \epsilon_y = 0.1$:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Predator-prey oscillations

Figure 9-3. Changes in the abundance of the lynx and the snowshoe hare, as indicated by the number of pelts received by the Hudson's Bay Company. This is a classic case of cyclic oscillation in population density. (Redrawn from MacLulich 1937.)

Picture from: <http://math.ucr.edu/home/baez/week309.html>

Atto-fox problem of the Volterra equations

- \triangleright For some parameters, the number of preys X can be extremely small, whereas the number of predators Y is significant. Predators can survive on small prey abundance.
- ► However, real populations due to fluctuations and bisexual structure can go extinct in such conditions.
- \blacktriangleright This effect was called *atto-fox problem* (atto denotes the numerical prefactor 10^{-18}) after some rabies studies (rabies virus—predator, fox—prey).

Generalized model of two-species interaction

- In Volterra hypotheses and generalized equations (see the project work) for the two-species interaction.
- ► Kolmogorov proposed a generalized predator-prey model:

$$
\begin{cases}\n\frac{dx}{dt} &= k_1(x)x - L(x)y \\
\frac{dy}{dt} &= k_2(x)y\n\end{cases}
$$

 $\blacktriangleright k_1(x)$ is a function-coefficient of the preys (x) reproduction in the absence of predators (y) . $\frac{d k_1(x)}{dx} < 0$ (limited resources).

- \blacktriangleright $L(x)$ is a number of preys consumed by a predator in a time unit. $L(x) > 0$, $L(0) = 0$.
- $\blacktriangleright k_2(x)$ is a function-coefficient of the predators' reproduction. $\frac{dk_2(x)}{dx} > 0$, $k_2(0) < 0 < k_2(\infty)$.

Kolmogorov equations

▶ Stationary points (two or three):

i)
$$
\begin{cases} x = 0 \\ y = 0 \end{cases}
$$
 ii)
$$
\begin{cases} x = A \\ y = 0 \end{cases}
$$
 iii)
$$
\begin{cases} x = B \\ y = C \end{cases}
$$

where
$$
k_1(A) = 0
$$
, $k_2(B) = 0$, and $C = \frac{k_1(B)B}{L(B)}$.

- \blacktriangleright i) is always saddle
- ii) is stable node $(A < B)$ or saddle $(A > B)$
- ► iii) is node/focus (if $\zeta = k_1(B) \frac{dk_1}{dx}(B)B C\frac{dL}{dx}(B) < 0$ stable, if $\zeta > 0$ unstable).

KOR & KERKER ADA KON

Phase portraits: Kolmogorov equations

G. Riznichenko, Mathematical modeling in biophysics. Lectures.

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

- ► JD Murray, Mathematical Biology, Chapter 2 (discrete 1D) population models).
- \triangleright Some tutorial on the population dynamics. Very descriptive. [http://www.cals.ncsu.edu/course/ent425/](http://www.cals.ncsu.edu/course/ent425/library/tutorials/ecology/popn_dyn.html) [library/tutorials/ecology/popn_dyn.html](http://www.cals.ncsu.edu/course/ent425/library/tutorials/ecology/popn_dyn.html)
- \triangleright Wikipedia page about the Logistic map. Very useful with many descriptive animations.

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

http://en.wikipedia.org/wiki/Logistic_map