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Living things are dynamical systems

» Dynamical systems theory can be applied to a very broad
range of phenomena.

» Biological systems are not exceptions.

» However, they possess certain properties that must be
accounted for:

1. Complex systems: many components, spatial
organization etc. Aggregated approach (population
dynamics) or detailed modelling.

2. Systems with reproduction: auto-catalytic
characteristics. Tendency to avoid global equilibrium.

3. Open system: always interact with the environment by
interchanging matter and energy.

4. Hierarchy of regulation: regulated by the complex
multi-level regulatory mechanisms.



Biological modeling

» Usually positive variables X > 0 (exceptions: e.g.,
electrical potentials).

» Positive parameters (if not complex, e.g. r = R — S,
reproduction R vs. senescence 5).

» Highly nonlinear systems.
» Different time scales.

» Many component systems (= inevitable approximation of
reality).



Ecological Population

» Population is a group of organisms (belonging to the same
species) that live together in the same habitat (ecological
niche) and can interbreed.

» Populations are usually described by a number, its density.
Thus an ODE (1D) can describe the population dynamics.

» However, there can be more complex models with separate
dynamical laws for different sub-groups, sorted, for
instance, by age (2D, 3D etc).

» Individual based models (usually, not ODE’s).



Population dynamics

» The density of a population changes over time.
» The primary sources for the change are:

Births (natality)

Deaths (mortality)

Immigration (influx)

Emigration (outflux)

vV vy vy

Change in Density = (Births + Immigration) — (Deaths + Emigration)

» There are other impacts (biotic and abiotic) on the
density—secondary ecological events:
» Density-independent: climate conditions, high temperature,
low humidity etc.
» Density-dependent: predation, parasitism, contagious
disease.



Malthus model

The model of exponential (unlimited) growth.

dz
— =rr
dt ’
where r = R — S, R — reproduction rate (natality), S —
senescence rate (mortality).
The solution of the exponential growth model is:

z(t) = Coe™,

Cy is a constant.



Malthus model dynamics
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Figure: The dynamics of the Malthus model depending on the

coefficient 7 for a single initial condition.



Verhulst model (logistic equation)

The growth of a population with the limitation
dr ( 1 T )
at T\ T KD

where K and r are positive constants.
The solution of the equation is:

roKet
K — xg + xge™t’

x(t) =

where xg is the initial condition, i.e. g = z(t = 0).



Verhulst model dynamics
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Figure: The Verhulst equation dynamics depending on the intial
conditions zg. K =1, r = 1.



Verhulst equation

» The equation has two important properties:
1. for small x it demonstrates the exponential growth.
2. for large x it reaches the limit K.
» K is the environmental carrying capacity (food resources,
space limit etc.)
» The equation has —%3}2 term reflecting the intraspecific
competition.
» As the density grows, the intraspecific competition
becomes more intensive, resulting in mortality increase and
natality drop.



r- and K-selection

r-selection

» Opportunist strategy: exploitation of unstable
environments and transient resources.

» r-species produce lots of offsprings in a short space of time,
rapidly disperse into new habitats as conditions become
unfavorable.

» Short life cycle, small body size, high mobility, high
reproduction rate r (hence r-strategy).

K-selection

» Stable habitats, long life cycles, larger body size, low
growth rate.

» Pressure is on the intraspecific competition and efficient
use of resources, i.e. focus on —%x2 term.



Evidence

» Unlimited growth (e.g. Malthus model): none, except for
the initial stages of growth, which is captured by the
Logistic equation too.

» Growth with limitation (e.g. Logistic equation):
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Unisexual vs. bisexual populations

» Linear growth terms (o 7 - x) correspond to unisexual
populations (Logistic and Malthus models).

» Paramecium populations (shown above) can reproduce and
propagate alone: by simple division of a cell into two
daughter cells. Each daughter cell becomes a distinct
individual.

» The growth of bisexual populations is better described
with quadratic terms, i.e. o< r - 22, since two individuals
must meet in order to interbreed (syngenesis).



Populations with syngenesis

1. Growth of a population with 2 distinct sexes. The
reproduction takes place only when two individuals meet.
Individuals can be still described by one variable.

2 = ra?
2. At higher population density the number of female
individuals becomes a limitation. This could be reflected
with the limitation denominator:
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3. The same population with the senescence. This helps to
account for the critical mass in the population.
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Populations with syngenesis

4. Finally, the intra-species competition gives the limitation
on the higher scale, i.e. population size does not blow up to

the infinity.
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Discrete population models

» Population size changes rather at discrete steps than
continously over time.

» General form for the model with evolution operator F; that
is depedent on k states at the previous time moments:

Nt — Ft(Ntfla Nt727 sy Nt—k’)

» One generation determines completely the other (e.g.
insects with fast development, zoo-plankton, fish, birds).
Generations do not overlap.

Nip1 = Fy(Ne)



Discrete Logistic map

» Recall the Logistic equation:

dN N
dt_TN(lK)

> Let’s arrange a substitute: dN < N¢y1 — Ny and
dt =1 (timestep is 1 year, month, day etc.)

» The discrete Logistic equation becomes:

N;
Nip1r = Ny [1-1-7“ <1—Kt>]



Biological reformulation of the Logistic map

» For some N; the RHS of the map becomes negative.
Namely, for N; > #K the next value Nyt becomes
negative.

» Thus, the the RHS was proposed to be changed by some
authors: N
Nyy1 = Neexp [r <1 — I;)}

» This new form of the map was successfully applied to some
species of fish and insects.



Lamerey Diagram and stability of solutions.

» One can see the solution course by the Lamerey Diagram.

» The diagram is the plot of Nyy1 = F(IV;) vs. Ny

» Solution is any sequence {N;}, t =0, 1,... satisfying the
map.

> Steady state is a solution of the form: Ny = Const = N*,
where N* = F(N*)



Solution of the Logistic map

» Steady state solution does not change from ¢ to ¢t + 1
implying for our equation:

ol 3))-

» So, the solution is:

N*=K

» One single positive solution, which, thus, has the biological
meaning of the capacity (or the growth limit) of the
population.



Stability of the solution

v

Applying small perturbation x; to the stationary solution
N* we can eventually obtain formula of the linearized

system:
dF
Tty1 = (CU\T)NN* - Xy + O(l‘g)

This is the geometric series with common ratio of
(%)

dN /) N=N*
The common ratio:

dF {T<1_N>}_TN6XP{T(1—%)}
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Stability of the solution

» From the convergence of the geometric series, solution
N* = K is stable if:
1—rl<1

» And the solution is unstable if:

[1—rl>1



Solutions of the Logistic Map




Solutions of the Logistic Map
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Interaction of two species: Lotka equations

v

Predator-prey system (e.g. hares x and wolves y).

v

Hares have non-limited food source and reproduct at
constant rate k.

v

Hares die when meet with wolves, which is proportional to
zy. Wolves grow and reproduct due these meeting events.

» Wolves die proportional to y.
dx
—=ko—k
dt 0 12Y
d
Y kizy — kay

dt



Lotka equations

» Steady state is:

_ ke ko
— A==
v k1 Y ko

» Roots of the characteristic equation:

—ki1ko £ \/(k‘lko)Q — 4]{:1/{0]{%
)\1’2 - 2ko

» Re )2 < 0= always stable steady state.

» If kiko > 4k3 — stable sink. If otherwise the steady state is
stable focus.



Lotka equations
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(Lotka-)Volterra equations

» Similar to Lotka equations.

» But hares grow linearly ¢,z on the unlimited food supply.

% = -T(ex - 'ny)
d
LA _y(ey - ’ny)

dt



Dynamics of the Volterra equations

v

Steady states are:
_ = _ €y
{gf =0y {:f W
y=0 ¥=5

Roots of the characteristic equation for the nonzero
solution:

)\172 = :I:i,/exey
Steady state type is center = oscillations, depending on the
initial conditions. But this is a nonlinear equation!
Thus, no conclusion can be drawn from the linear analysis.

However, one can show that ther is a constant entity along
the solution lines of the system (constant of motion).



Constant of motion in the Volterra equations

d €y — Yy
» If we integrate without time: & _ —M

dr  z(ex — Y2y
» We will see the constant entity K to be:

K=e¢Iny+enw —yy— vy

» Like in Hamiltonian systems we just need to plot levels of
the constant of motion K.

Contour plot for ¢, = 1,7, =7, = 0.1,¢, = 0.1:
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Volterra equations: simulation

Simulations for €, = 1,7, = v, = 0.1,¢, = 0.1:
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Predator-prey oscillations

180

Hare

—— LynX

Number in thousands

1 1 1 1 L4 1
1905 1915 1925 1935

i 1
1885 1805
Titne in years

1 1 1
1845 1855 1865 1875

Figure 9-3. Changes in the abundance of the lynx and the snowshoe hare, as indicated by the aum-
ber of pelts received by the Hudson’s Bay Company. This is a classic case of cyclic oscillation in popula-
tion density. (Redrawn from MacLulich 1937.)

Picture from: http://math.ucr.edu/home/baez/week309.html



http://math.ucr.edu/home/baez/week309.html

Atto-fox problem of the Volterra equations

» For some parameters, the number of preys X can be
extremely small, whereas the number of predators Y is
significant. Predators can survive on small prey abundance.

» However, real populations due to fluctuations and bisexual
structure can go extinct in such conditions.

» This effect was called atto-fox problem (atto denotes the
numerical prefactor 10718) after some rabies studies (rabies
virus—predator, fox—prey).
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Generalized model of two-species interaction

» Volterra hypotheses and generalized equations (see the
project work) for the two-species interaction.

» Kolmogorov proposed a generalized predator-prey model:

— k(@) - L)y

dx
%
—_— = k

i 2(2)y

» ki(z) is a function-coefficient of the preys (z) reproduction
in the absence of predators (y). %y) < 0 (limited

resources).

» L(x) is a number of preys consumed by a predator in a
time unit. L(x) > 0, L(0) = 0.

> ko(z) is a function-coefficient of the predators’
reproduction. %{S‘d) >0, k2(0) < 0 < ka(00).



Kolmogorov equations

Stationary points (two or three):

k(B
where k1(A) =0, ko(B) =0, and C = IL((B))
i) is always saddle

ii) is stable node (A < B) or saddle (A > B)

iii) is node/focus (if ( = k1(B) — %(B)B ~Cci(B)<0
stable, if ¢ > 0 unstable).



Phase portraits: Kolmogorov equations
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G. Riznichenko, Mathematical modeling in biophysics. Lectures.



Useful resources

» JD Murray, Mathematical Biology, Chapter 2 (discrete 1D
population models).

» Some tutorial on the population dynamics. Very
descriptive. http://www.cals.ncsu.edu/course/ent425/
library/tutorials/ecology/popn_dyn.html

» Wikipedia page about the Logistic map. Very useful with
many descriptive animations.
http://en.wikipedia.org/wiki/Logistic_map


http://www.cals.ncsu.edu/course/ent425/library/tutorials/ecology/popn_dyn.html
http://www.cals.ncsu.edu/course/ent425/library/tutorials/ecology/popn_dyn.html
http://en.wikipedia.org/wiki/Logistic_map

