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Harmonic oscillator: linear oscillations

» Famous example from physics:

d’x =Y
T dt

> Steady state: x =0and y =0

Harmonic oscillator...classical
Let us consider a particle of mass m attached to a spring » Characterist ic equation
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Harmonic oscillations

» The amplitude is dependent on the initial conditions.

» There is no notion of an oscillatory attractor.

» Period of oscillations is 2.
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Nonlinear oscillations

» In general appear through the Hopf bifurcation.

» Hopf bifurcation (HB) is a codim-1 bifurcation, that is it
requires only one parameter to be changed for the
bifurcation to occur.

» Limit cycle is another type of attractor in the dynamical
systems with nonlinear evolution operator.



Limit cycle

» Limit cycle is a closed trajectory in the phase space (at
least 2D).

» Limit cycle is an attractor, thus, having the basin of
attraction.

» Trajectories from the limit cycle’s basin of attraction tend
toward the limit cycle either in forward or backward time.

» Limit cycle corresponds to a periodic behaviour. For a
system:
{w’ = P(z,y)
y' = Q(z,y)

» 2(t+T)==x(t) and y(t + 1) = y(t): periodic movement
with period T' > 0.



Limit cycle

» Consider the system:

{ o' =y+all - (2% +4°)]
y =~z +yll - (2% +y°)]

» Trajectory x2 4 y? = 1 is a limit cycle.
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Two types of Hopf bifurcation

O

Two types of the Hopf bifurcation: super- (A) and
sub-critical (B).




Stability of the limit cycles

» Limit cycles can be stable or unstable (semi-stable).
» Figure below shows the schematic of the stable (A),
semi-stable (B), and unstable (C) limit cycles.

» The unstable limit cycles usually demarcate regions of
attraction for two other stable attractors (equilibrium and
limit cycle, see the sub-critical Hopf bifurcation).
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Stability of the limit cycles

» Periodic solution: Z(t) = z(t +T'), where T is period.

» Matrix of linearization is periodic too: A(t) = A(t +T).

» Stability is determined by how the small perturbation (¢o)
changes during the period T'.

y(to +T) = Mry(to)

where M7 is a constant monodromy matrix.
» The eigenvalues of My (Det[Mr — pl] = 0) are called
(Floquet) multipliers.

» Stable limit cycles imply all |u;| < 1.
» Lyapunov exponents:

1
Ai = o In ]

» )\; = 0 corresponds to u; = +1. For the limit cycles one A is
always zero, hence, |u| = 1.



Finding limit cycles

» Poincaré-Bendixson theorem: Suppose R is a regions
between two simple closed curves C7 and Cs. If
1. at each point of Cy and C5 the vector field points toward
the interior of R and
2. R contains no critical points
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Finding limit cycles

» If there is a continous region R containing an unstable
equilibrium U and the vector field on the region’s boundary
points toward the interior of the region, then there is at
least one stable limit cycle LC in the region.




Non-existence criteria

There are no closed trajectories in a system if:
» No equilibrium points

» One equilibrium other than node, focus, or center (e.g.
saddle)

» Bendixson criterion: if P, and @, are continuous in a
region R which is simply-connected (i.e. without holes) and
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at any point of R, then the system

{96’ = P(z,y)
y/ = Q(-ﬁ,y)

has no closed trajectories inside R.



Finding period of oscillations
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Calculating the Poincaré map and period T' (return times) of

the trajectory. T'=t; 41 —t; (e.g. T =t5 — ty).




Bifurcations of the limit cycles

» One multiplier is always +1.
» Among others the bifurcation criteria (codim-1) are three:

1. p(a*) = +1 (saddle-node bifurcation of the limit cycles)
2. p(a*) = —1 (period doubling bifurcation)
3. p(a*) = exp(L¢i) (Neimark-Sacker bifurcation)



Biochemical and Cellular cycles

Table 9.1 Biochemical and Cellular Rhythms Sources: Goldbeter (1996), Rapp (1979).

[ Rhythm Period \
Membrane potential oscillations 10 ms-10s
Cardiac rhythms 1s
Smooth muscle contraction seconds - hours
Calcium oscillations seconds-minutes
Protoplasmic streaming 1 min
Glycolytic oscillations 1min-1h
cAMP oscillations 10 min
Insulin secretion (pancreas) minutes
Gonadotropic hormone secretion  hours
Cell cycle 30 min-24 h
Circadian rhythms 24 h
Ovarian cycle weeks-months

C. Fall, Computational Cell Biology, Springer. Chapter 9.



Brusselator

» Brusselator is a model systems mimicking some molecular
interactions involving tri-molecular chemical
reactions (usual case for biology):

AL X
2X +Y 53X
B+X5Y+D
XL E
» All reaction for simplicity have the same rate constant

equal to 1. System is resolved in regard to variables X and
Y, whereas A and B are the parameters:

X
%;:A—w+UX+XW

Y
Y _px_x?y
dt



Brusselator

> Steady state:

{X =A
- B
Y =—
A

» Characteristic equation:
B-1-Xx A% | 0=
-B —A2 )|
\ B—-1-A%+./(B—1- A2)2 — 442
12 =

’ 2

» Re) > 0 (SS is unstable), when B > 1+ A%



Brusselator dynamics

XY

©

>

"o
Time



Hopf Bifurcation: Brusselator
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Genetic oscillator: experimental setup

Repressilator Reporter

P lac01

amph
tetR-lite

pSC101
origin

lacl-lite

ColE1

P tet01

M. Elowitz and S. Leibler, Nature, 2000.



Genetic oscillator: model

m; is a mRNA and p; is a protein.

dm; ‘ -
a0 + 1+ p? T ao 1 = lacl,tetR, cl
; . 0
dpz ] = CI, ZCLCI, tetR
@ = P
Parameters:

> « is a transcription rate

v

ap is a leaky transcription rate

n 1s the Hill-coefficient

v

v

B is the ratio between mRNA and protein lifetimes =
inverse degradation rates

M. Elowitz and S. Leibler, Nature, 2000.



Genetic oscillator dynamics

HB

o 25

HB
1.5




Photosynthetic oscillator

» Photosynthesis is a process of transform of the light
energy to the energy of the chemical bonds accompanied
with emission of O9 and consumption of COs. The process
takes place in plant(-like) organisms.

» The chemical energy is stored in carbohydrate molecules,
such as sugars.

» The process of Og emission is periodic given the periodicity
of the day-and-night cycle. However, periodicity is
persistent for long time even in the constant light
conditions.



Photosynthesis: two stages

H.O Eigint » Photosynthesis consists
2 Oz of two stages: light and
o T qak
Light reactions » Light stage involves fast
1_ . electron chain reactions.
Q\

%% Q » Dark reactions (Calvin
cycle) are slow chemical

transformations.

> Cycle implies the initial
chemical is regenerated
inside the cycle.

sugar

Wikipedia



Z-scheme
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Thylakoid

oxygen-evolving

thylakoid lumen

Wikipedia



Calvin cycle: dark reactions
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Photosynthetic oscillator: dark reactions

» Dark reactions involve various types of rearrangements
between sugars of different size conventionally measured in
number of C atoms they contain.

» The system is reduced to describe the dynamics of Cs (X)
and Cg (Y) sugars.

» The system describes various types of transformations, e.g.

C3+C3— Cs
dX
— = X2~ (1+ )XY 4+~
dt
dY _ 1 9 9



Photosynthetic oscillator: steady states

dX dY
> g—tiOandﬁzogive:
» X =Y =1.
> The eigenvalues for the equilibrium:

l—y—gei\/(l—'y—%e)Q—%le’y
A2 = 5

v

Steady state is focus.



Photosynthetic oscillator: dynamics
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Glycolysis oscillations

» Glycolysis is a process of a chemical decomposition of
glucose and other sugars, into three-carbon chemicals, e.g
Pyruvate.

» The process entails the liberation of 2 molecules of
ATP (the main energy currency of a cell) for each glucose

molecule.
N

Pyruvate

Fructose 1,6-bisphosphate il &

o phosphate aldolas
Glyoeraldehyde 3 phosphale
Glyceraldeh
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Glycolysis oscillations: PFK-reaction

The reaction [Fructose-6-

(B phosphate ~ —  Fructose-1,6-
Howoses — Fgp  Fap— - —x= 2pywate - bisphosphate] is governed by the
>_< 2ADP 24T enzyme Phospho Frukto Ki-

e ;FTK ace nase (PFK) and is an oscillatory

ol reaction.

C. Fall, Computational Cell Biology, Springer.



Two-subunit enzymes

» Analogously to one subunit enzymes (Michaelis-Menten
equation).

EE +S+= EES  dissociation constant = k_1 /k1

EES — EE+ P rate constant = k3
EES+ S += SEES  dissociation constant = k_o/ko
SEES — EES + P rate constant = ky

» The rate of the reaction:

ap]  ds] EEl () (ks + k()

v = = — =
dt dt 14 ( (] ) n (Kﬁ;m)
where [EE|r = [EE] + [EES] + [SEES],

K1 = (k—1 +k3)/k1, and Ko = (k—o +ka)/k2. Km1/Kmno
is the inverse affinity of substrates to the enzyme.




Cooperative binding

> Hill equation: K1 — oo, K9 — 0, such that
Ko1Ky = Kfn = Constant

v — VmaX ([S]/Km)Q Vmax — k‘4[EE]T

L+ ([S)/Km)®

> Substrate inhibition: k3 — oo, K1 — 00, Ko — 0, such
that K1 Ko = Kfn = Constant, k3K,,2 — 0o and
k3s|EE|r K,/ Kmn1 = Vinax = constant

Vina[S)/ K
L+ ([S]/Km)?

» No cooperation: the same Michaelis-Menten equation:
Vinax[S]

T K+ 9]



Glycolytic oscillator

» Given x is Fructose-6-phosphate and y is
Fructose-1,6-bisphosphate, the system of equations can be
written in the form:

dx T Y

@
dt XKz + 7 Kony + 4

dgzx z vy
dt Kz +2 Ky +y K, +y

» NOTE the Michaelis-Menten terms! Reaction is dependent
upon the PFK enzyme.



Glycolytic oscillator

Given K,,; > x and K,,, > y we can substitute the variables
and get:

i I
dt Y
@—a . 147
at Y 147y
— k)2 K2 Ko k
where o = (g ) Yand r= ——

(Ky)? kx q+k



Glycolytic oscillator

» Steady state is T =g = 1.
» The characteristic equation:
—1-X -1
ar =0

R e

» =Roots:

rla—1) =14+ /(rla—1)—1)2 —da(l +7)

’ 2(1+4r)
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Glycolytic oscillator

0.25,r=1

o=

15

0.5




1CS

dynam

Glycolytic oscillator
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Summary

» Oscillations are abundant in life.

» This ranges on the scale from the ecological to the cellular
and molecular levels ...

» as well as on the time span from the periods of miliseconds
(e.g. brain) to the months and even years (e.g. seasonal
migrations).

» There are specific biological functions that ultimately
depend on oscillatory behaviors (photosynthesis, glycolysis,
circadian rhythms etc.).



Further reading

» C. Fall, Computational Cell Biology, Springer. Chapter 9
(“Biochemical Oscillations”).

> J.D. Murray, Mathematical Biology: 1. Intoroduction,
Springer, 3rd ed., Chapter 6, 7.



