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Harmonic oscillator: linear oscillations

I Famous example from physics:

m
d2x

dt2
= −kx⇒


dx

dt
= y

dy

dt
= − k

m
x

I Steady state: x = 0 and y = 0

I Characteristic equation∣∣∣∣ −λ 1
−k/m −λ

∣∣∣∣ = 0⇒ λ2+
k

m
= 0

I Given k > 0 and m > 0
(physical constants)

⇒ λ1,2 = ±i
√

k
m



Harmonic oscillations

I The amplitude is dependent on the initial conditions.

I There is no notion of an oscillatory attractor.

I Period of oscillations is 2π√
k
m

.
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Harmonic oscillator: k=1, m=1
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Nonlinear oscillations

I In general appear through the Hopf bifurcation.

I Hopf bifurcation (HB) is a codim-1 bifurcation, that is it
requires only one parameter to be changed for the
bifurcation to occur.

I Limit cycle is another type of attractor in the dynamical
systems with nonlinear evolution operator.



Limit cycle

I Limit cycle is a closed trajectory in the phase space (at
least 2D).

I Limit cycle is an attractor, thus, having the basin of
attraction.

I Trajectories from the limit cycle’s basin of attraction tend
toward the limit cycle either in forward or backward time.

I Limit cycle corresponds to a periodic behaviour. For a
system: {

x′ = P (x, y)
y′ = Q(x, y)

I x(t+ T ) = x(t) and y(t+ T ) = y(t): periodic movement
with period T > 0.



Limit cycle

I Consider the system:{
x′ = y + x[1− (x2 + y2)]
y′ = −x+ y[1− (x2 + y2)]

I Trajectory x2 + y2 = 1 is a limit cycle.



Two types of Hopf bifurcation

HB

HB

BA

Two types of the Hopf bifurcation: super- (A) and
sub-critical (B).



Stability of the limit cycles

I Limit cycles can be stable or unstable (semi-stable).

I Figure below shows the schematic of the stable (A),
semi-stable (B), and unstable (C) limit cycles.

I The unstable limit cycles usually demarcate regions of
attraction for two other stable attractors (equilibrium and
limit cycle, see the sub-critical Hopf bifurcation).



Stability of the limit cycles

I Periodic solution: x̄(t) = x̄(t+ T ), where T is period.

I Matrix of linearization is periodic too: A(t) = A(t+ T ).

I Stability is determined by how the small perturbation ȳ(t0)
changes during the period T .

ȳ(t0 + T ) = MT ȳ(t0)

where MT is a constant monodromy matrix.

I The eigenvalues of MT (Det[MT − µI] = 0) are called
(Floquet) multipliers.

I Stable limit cycles imply all |µi| ≤ 1.

I Lyapunov exponents:

λi =
1

T
ln |µi|

I λi = 0 corresponds to µi = ±1. For the limit cycles one λ is
always zero, hence, |µ| = 1.



Finding limit cycles

I Poincaré-Bendixson theorem: Suppose R is a regions
between two simple closed curves C1 and C2. If

1. at each point of C1 and C2 the vector field points toward
the interior of R and

2. R contains no critical points

then the system has a closed trajectory LC lying inside R.



Finding limit cycles

I If there is a continous region R containing an unstable
equilibrium U and the vector field on the region’s boundary
points toward the interior of the region, then there is at
least one stable limit cycle LC in the region.



Non-existence criteria

There are no closed trajectories in a system if:

I No equilibrium points

I One equilibrium other than node, focus, or center (e.g.
saddle)

I Bendixson criterion: if Px and Qy are continuous in a
region R which is simply-connected (i.e. without holes) and

∂P

∂x
+
∂Q

∂y
6= 0

at any point of R, then the system{
x′ = P (x, y)
y′ = Q(x, y)

has no closed trajectories inside R.



Finding period of oscillations

Calculating the Poincaré map and period T (return times) of
the trajectory. T = ti+1 − ti (e.g. T = t5 − t4).



Bifurcations of the limit cycles

I One multiplier is always ±1.

I Among others the bifurcation criteria (codim-1) are three:

1. µ(α∗) = +1 (saddle-node bifurcation of the limit cycles)
2. µ(α∗) = −1 (period doubling bifurcation)
3. µ(α∗) = exp(±φi) (Neimark-Sacker bifurcation)



Biochemical and Cellular cycles

C. Fall, Computational Cell Biology, Springer. Chapter 9.



Brusselator

I Brusselator is a model systems mimicking some molecular
interactions involving tri-molecular chemical
reactions (usual case for biology):

A
1−→ X

2X + Y
1−→ 3X

B +X
1−→ Y +D

X
1−→ E

I All reaction for simplicity have the same rate constant
equal to 1. System is resolved in regard to variables X and
Y, whereas A and B are the parameters:

dX

dt
= A− (B + 1)X +X2Y

dY

dt
= BX −X2Y



Brusselator

I Steady state: {
X̄ = A

Ȳ =
B

A

I Characteristic equation:∣∣∣∣B − 1− λ A2

−B −A2 − λ

∣∣∣∣ = 0⇒

λ1,2 =
B − 1−A2 ±

√
(B − 1−A2)2 − 4A2

2

I Reλ > 0 (SS is unstable), when B > 1 +A2.



Brusselator dynamics
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Hopf Bifurcation: Brusselator

A = 1
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Genetic oscillator: experimental setup

M. Elowitz and S. Leibler, Nature, 2000.



Genetic oscillator: model

mi is a mRNA and pi is a protein.

dmi

dt
= −mi +

α

1 + pnj
+ α0

dpi
dt

= −β(pi −mi)

(
i = lacI, tetR, cI
j = cI, lacI, tetR

)
(1)

Parameters:

I α is a transcription rate

I α0 is a leaky transcription rate

I n is the Hill-coefficient

I β is the ratio between mRNA and protein lifetimes =
inverse degradation rates

M. Elowitz and S. Leibler, Nature, 2000.



Genetic oscillator dynamics

β = 1, n = 2, α0 = 0
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Photosynthetic oscillator

I Photosynthesis is a process of transform of the light
energy to the energy of the chemical bonds accompanied
with emission of O2 and consumption of CO2. The process
takes place in plant(-like) organisms.

I The chemical energy is stored in carbohydrate molecules,
such as sugars.

I The process of O2 emission is periodic given the periodicity
of the day-and-night cycle. However, periodicity is
persistent for long time even in the constant light
conditions.



Photosynthesis: two stages

I Photosynthesis consists
of two stages: light and
dark.

I Light stage involves fast
electron chain reactions.

I Dark reactions (Calvin
cycle) are slow chemical
transformations.

I Cycle implies the initial
chemical is regenerated
inside the cycle.

Wikipedia



Z-scheme

Wikipedia



Thylakoid

Wikipedia



Calvin cycle: dark reactions

Wikipedia



Photosynthetic oscillator: dark reactions

I Dark reactions involve various types of rearrangements
between sugars of different size conventionally measured in
number of C atoms they contain.

I The system is reduced to describe the dynamics of C3 (X)
and C6 (Y) sugars.

I The system describes various types of transformations, e.g.
C3 + C3 → C6

dX

dt
= X2 − (1 + γ)XY + γ

dY

dt
=

1

7
ε(7X2 − Y 2 − 6XY )



Photosynthetic oscillator: steady states

I
dX

dt
= 0 and

dY

dt
= 0 give:

I X̄ = Ȳ = 1.

I The eigenvalues for the equilibrium:

I

λ1,2 =
1− γ − 8

7ε±
√

(1− γ − 8
7ε)

2 − 64
7 εγ

2

I Steady state is focus.



Photosynthetic oscillator: dynamics
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Glycolysis oscillations

I Glycolysis is a process of a chemical decomposition of
glucose and other sugars, into three-carbon chemicals, e.g
Pyruvate.

I The process entails the liberation of 2 molecules of
ATP (the main energy currency of a cell) for each glucose
molecule.



Glycolysis oscillations: PFK-reaction

The reaction [Fructose-6-
phosphate → Fructose-1,6-
bisphosphate] is governed by the
enzyme Phospho Frukto Ki-
nase (PFK) and is an oscillatory
reaction.

C. Fall, Computational Cell Biology, Springer.



Two-subunit enzymes

I Analogously to one subunit enzymes (Michaelis-Menten
equation).

EE + S −⇀↽− EES dissociation constant = k−1/k1

EES −→ EE + P rate constant = k3

EES + S −⇀↽− SEES dissociation constant = k−2/k2

SEES −→ EES + P rate constant = k4

I The rate of the reaction:

v =
d[P ]

dt
= −d[S]

dt
=

[EE]T

(
[S]
Km1

)(
k3 + k4

(
[S]
Km2

))
1 +

(
[S]
Km1

)
+
(

[S]2

Km1Km2

)
where [EE]T = [EE] + [EES] + [SEES],
Km1 = (k−1 + k3)/k1, and Km2 = (k−2 + k4)/k2. Km1/Km2

is the inverse affinity of substrates to the enzyme.



Cooperative binding

I Hill equation: Km1 →∞, Km2 → 0, such that
Km1Km2 = K2

m = Constant

v =
Vmax ([S]/Km)2

1 + ([S]/Km)2
, Vmax = k4[EE]T

I Substrate inhibition: k3 →∞, Km1 →∞, Km2 → 0, such
that Km1Km2 = K2

m = Constant, k3Km2 →∞ and
k3[EE]TKm/Km1 = Vmax = constant

v =
Vmax[S]/Km

1 + ([S]/Km)2

I No cooperation: the same Michaelis-Menten equation:

v =
Vmax[S]

Km + [S]



Glycolytic oscillator

I Given x is Fructose-6-phosphate and y is
Fructose-1,6-bisphosphate, the system of equations can be
written in the form:

dx

dt
= k − χ x

Kmx + x

y

Kmy + y

dy

dt
= χ

x

Kmx + x

y

Kmy + y
− q y

K ′my + y

I NOTE the Michaelis-Menten terms! Reaction is dependent
upon the PFK enzyme.



Glycolytic oscillator

Given Kmx � x and Kmy � y we can substitute the variables
and get: 

dx

dt
= 1− xy

dy

dt
= αy

(
x− 1 + r

1 + ry

)
where α =

(q − k)2KmxKmy(
K ′my

)2
kχ

and r =
k

q + k
.



Glycolytic oscillator

I Steady state is x̄ = ȳ = 1.

I The characteristic equation:∣∣∣∣−1− λ −1
α αr

1+r − λ

∣∣∣∣ = 0

I ⇒Roots:

λ1,2 =
r(α− 1)− 1±

√
(r(α− 1)− 1)2 − 4α(1 + r)

2(1 + r)



Glycolytic oscillator: dynamics
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Glycolytic oscillator: dynamics
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Summary

I Oscillations are abundant in life.

I This ranges on the scale from the ecological to the cellular
and molecular levels ...

I as well as on the time span from the periods of miliseconds
(e.g. brain) to the months and even years (e.g. seasonal
migrations).

I There are specific biological functions that ultimately
depend on oscillatory behaviors (photosynthesis, glycolysis,
circadian rhythms etc.).



Further reading

I C. Fall, Computational Cell Biology, Springer. Chapter 9
(“Biochemical Oscillations”).

I J.D. Murray, Mathematical Biology: I. Intoroduction,
Springer, 3rd ed., Chapter 6, 7.


