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Neurons: biological background

Different scales. T. P. Trappenberg, Fundamentals of Computational

Neuroscience, Oxford University Press.



Basic facts and terminology

I Neuron is a cell capable of transmitting electrical
signals.

I Neurons have a soma, an axon, and dendrites.
I Dendrites: input devices collecting signals.
I Soma: central processing unit.
I Axon: output device.

I > 1011 neurons in the human brain and even more glial
cells.

I 103 morphologically different neurons.
I Neurons signal to each other through the chemical

synapses, where the electrical signal is transformed into the
chemical one.

I Most neurons generate brief voltage pulses (action
potentials, spikes) in response to inputs from the
presynaptic neurons.

I Action potentials originate at or close to the cell body and
propagate down the axon.



Spike recording

Neuron receives signals from other neurons through more than
104 synapses (for a typical neuron).

Figure: Two interconnected neurons and in vitro recorded spike. E.
M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007.



Spike/Action potential

Wikipedia.



Firing of neurons

I Fundamental question of neuroscience:
I What makes neurons fire?
I Why does the response to the same input signal differ in

two neurons?

I One needs to understand dynamical properties of neurons
in order to answer these questions.



Firing threshold of a neuron

For example, neurons are sometimes considered as integrators
that sum incoming potentials and “compare” the integrated
signal with a voltage value, the firing threshold.

Figure: The concept of a firing threshold. E. M. Izhikevich,
Dynamical Systems in Neuroscience, MIT Press, 2007.



Where is the threshold?

E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007.



Where is the threshold/rheobase?

E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007.



Resonant response

E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007.



Synapse

Figure: Wikimedia Commons.



Events in synapse dynamic activity

I After the action potential has reached the end of the axon,
Ca2+ channels open and Ca2+ ions flow inside the
presynaptic neuron.

I The Ca2+ activates a set of proteins attached to vesicles
with neurotransmitters.

I Neurotransmitters (e.g., glutamate) are released from the
presynaptic neuron to the synaptic cleft.

I This means that electrical signal is changed to chemical
signal.

I Neurotransmitters bind to postsynaptic receptors.

I After receptors are activated, for example, Ca2+ ions can
flow inside the postsynaptic neuron.

I Calcium triggers many events inside the postsynaptic
neuron.



Ion distribution

I Ion concentrations are different inside and outside of a cell,
which creates electrochemical gradients — the major
driving force of neural activity.

I Electrical signals are carried by Na+, Ca2+, K+, and Cl−,
which move through membrane channels according to their
electrochemical gradients.

I Ionic concentration gradients across the cell membrane are
maintained by

I Active transport of ions by pumps, exchangers,... (requires
energy)

I Passive transport of ions (selective permeability,
electrochemical gradient, no energy required) through
channels (large protein molecules in the membrane).

I The intracellular medium of a neuron has high
concentration of K+ ions and negatively charged
molecules (denoted by A−).



Ion distribution

Figure: Ion concentrations and Nernst equilibrium potential in a
typical mammalian neuron. A− are membrane-impermeant anions.
Temperature 37◦C (310◦K) E. M. Izhikevich, Dynamical Systems in
Neuroscience, MIT Press, 2007.



Nernst equation

I There are two forces that drive each ion species through the

membrane channel: concentration and electrical gradients.

Figure: Diffusion of K+ ion down the concentration gradient through the membrane (a)
creates an electric potential force pointing in the opposite direction (b) until the diffusion and
electrical forces counter each other (c). The resulting transmembrane potential is referred to as

the Nernst equilibrium potential for K+.



Nernst equation

I When chemical and electrical gradients are
counterbalanced the equilibrium is achieved: the net
cross-membrane current is zero.

I The value of such an equilibrium potential depends on the
ionic species and it is given by the Nernst equation:

Eion =
RT

zF
ln

[Ion]out
[Ion]in

,

where [Ion]out and [Ion]in are concentrations of the ions
outside and inside the cell, respectively; R is the universal
gas constant (8, 315 mJ/(K◦·Mol)); T is temperature in
degrees Kelvin; F is Faraday’s constant; z is the charge
value of the ion (z = 1 for Na+ and K+; z = −1 for Cl−;
and z = 2 for Ca2+).

I When the membrane potential V = Eion, the net current of
the given ion Iion = 0 by the definition of the Nernst
equilibrium potential.



Ionic Currents and Conductances

I V is membrane potential and EK , ENa, ECa and ECl

denote the Nernst equilibrium potential.
I In general, the net current of K+ is proportional to the

difference of potentials:

IK = gK(V − EK) ,

where gK (mS/cm2) is the K+ conductance and (V − EK)
is the K+ driving force.

I The other major ionic currents are

INa = gNa(V−ENa) , ICa = gCa(V−ECa) , ICl = gCl(V−ECl)

I If gi is constant then the current is said to be Ohmic. In
general, gi in neurons are not Ohmic, since they may
depend on time, potential and pharmocalogical agents. It
is these nonlinear non-constant conductances gi
that allow a neuron to generate an action potential,
or spike.



Circuit representation of cell membrane

I Capacitors are used to model the charge storage capacity of the cell
membrane.

I Resistors are used to model the various types of ion channels in the
membrane.

I Batteries are used to represent the electrochemical equilibrium
(Nernst) potentials established by different intra- and extracellular ion
concentrations.

I Ohm’s law: V = RI = 1
g
I, V is voltage, R resistance, I electric

current, g conductance.



I Membrane potential: V = Vin − Vout (usually negative).

I Capacitive current: Ic(t) = Cm
dV (t)
dt , where Cm is the

membrane capacitance.
I Ionic current: Ii(t) = V (t)−Ei

Ri
≡ gi(V (t)− Ei), where Ei

is the equilibrium potential for ion i from Nernst equation
and Ri is the resistance.

I Cell membrane contains several different types of ion
channels.

I The total current that flows across cell membrane
(membrane current) represents the sum of the ion fluxes
through all these different kinds of ion channels.

I The total current Im through the cell membrane:

Im(t) = Ic(t) +
∑
ions

Ii(t) = Cm
dV (t)

dt
+

∑
ions

V (t)− Ei

Ri

I Resting membrane potential can be found when setting
Im = 0 and dV (t)

dt = 0:

Vrest =

∑
ions giEi∑
ions gi

.



Neurons are excitable

Ii(t) = gi(V (t)− Ei)

I If gi is a constant then the current is said to be Ohmic.

I In general, gi in neurons are not Ohmic, since they may
depend on time, potential and pharmocalogical agents.

I It is non-constant conductances gi, which are
nonlinear functions of the membrane potential and
time, that allow a neuron to generate an action
potential, or spike.



Ion channels

I Allow passage of charged ions through their pores.

I Direction of ion movement through ion channel is governed
by the electrochemical gradient.

I Channels are named by what ions they allow to pass.

I Ion channels open in response to variety of stimuli: changes
in the membrane potential V , certain chemical (ligands)
outside or inside the cell.

I The electrical conductance of individual channels can be
controlled by gating particles (gates), which switch the
channels between open and closed states:

I = ḡp(V (t)− E),

where conduntance is expressed as maximum conduntance
ḡ multiplied by average proportion of channels in open
state p.



I Each gate is either permissive or nonpermissive.
I Channel is open if all the gates are permissive

simultaneously.
I Channel names often indicate what controls the gate

(voltage-gated, ligand-gated).
I Voltage-gated channels:

I Gates are divided into two types: those that activate the
channel and those that inactivate them.

I Probability of the activation gate to be in the permissive
state is m.

I Probability of the inactivation gate to be in the permissive
state is h.

I Proportion of open channels in large population is
p = mahb, where a is the number of activation gates and b
the number of inactivation gates.

I Some channels do not have inactivation gates and hence
p = ma.

I Current produced by channels, which do not have
inactivation gates, is called persistent. In contrast, current
produced by channels, which do have inactivation gates, is
called transient.



Gated ion channels

E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007.



Integrate-and-fire neuron

Membrane potential increases with time until it reaches a
constant threshold value, at which point a spike occurs and the
potential is reset to its resting potential, after which the model
continues to run.
Several different types, original is:

Cm
dV

dt
= I(t).

Leaky integrate-and-fire neuron:

Cm
dV

dt
= I(t)− gleak(V − Vleak).



Integrate-and-fire simulations

External input current below the treshold does not evoke the
spiking activity (left). Input current above the

threshold—spikes (right).



Gating of ion channel

Gate can be either permissive (”open”) or nonpermissive
(”closed”):

C
k+

−−⇀↽−−
k−

O.

I C is the nonpermissive state of the gate.

I O is the permissive state of the gate.

I Total number of gates N = NC +NO.

I Fraction (probability) of permissive gates
[O] = fO = NO/N .

I Fraction of nonpermissive gates
[C] = fC = NC/N = (N −NO)/N = 1−NO/N = 1− fO.

I Flux for O
k−−−→ C: k−fO

I Flux for C
k+−−→ O: k+(1− fO)



I Change in fO over time:

dfO
dt

= k+(1− fO)− k−fO = k+ − k+fO − k−fO

= k+
k+ + k−

k+ + k−
− k+fO − k−fO

= k+
k+

k+ + k−
+ k+

k−

k+ + k−
− k+fO − k−fO

= (k+ + k−)(
k+

k+ + k−
− fO)

=
f∞ − fO

τ
,

where τ = 1
k++k− , f∞ = k+

k++k− .

Historically, from Hodgkin-Huxley tradition k+ = αi(V ) and
k− = βi(V ) for i-th ion.



Hodgkin-Huxley model

I Giant axon of the squid.

I Action potential involves two major voltage-dependent
ionic conductances, gNa for sodium and gK for potassium
(independent of each other). Leak conductance do not
depend on membrane potential. Total ionic current:∑

ions

Ii(t) = INa + IK + Ileak,

where Ii(t) = gi(V (t), t)(V (t)− Ei).

I Conductances are expressed as a maximum conduntance ḡi
multiplied by a coefficient representing the fraction of the
maximum conductance available (fraction of gates in
permissive state).

I Coefficient is a function of one or more activating and
inactivating gates.



Hodgkin-Huxley model

I Current Im through the cell membrane:

Im(t) = Ic(t) +
∑
ions

Ii(t) = Ic(t) + INa + IK + Ileak

= Cm
dV (t)

dt
+ ḡKn

4(V (t)− EK)+

ḡNam
3h(V (t)− ENa) + gleak(V (t)− Vleak)

I ḡi is maximal conductance of i-th ion,

I n, m are the probabilities to find one activation gate in
permissive state, h is the probability that the inactivating
gate is not in its nonpermissive state, dimensionless
between 0 and 1,

I K+ conductance is modeled using four activation gates,

I Na+ conductance is modeled using three activation gates
and one inactivation gate



I Hodgkin-Huxley model:

Cm
dV (t)

dt
= −ḡKn4(V (t)− EK)− ḡNam

3h(V (t)− ENa)

− gleak(V (t)− Vleak) + Iapp(t),

dn

dt
= αn(V )(1− n)− βn(V )n =

n∞ − n
τn

,

dm

dt
= αm(V )(1−m)− βm(V )m =

m∞ −m
τm

,

dh

dt
= αh(V )(1− h)− βh(V )h =

h∞ − h
τh

,

where

I ḡK = 36 mS/cm2, EK = −12 mV, ḡNa = 120 mS/cm2,
ENa = 115 mV, gleak = 0.3 mS/cm2, Vleak = 10.613 mV,
Cm = 1 µF/cm2, Iapp is applied current,



HH model: spike development



HH model: dynamics of currents



Neurons are dynamical systems

I An important result of the Hodgkin-Huxley studies is that
neurons are dynamical systems, so they should by studied
as such.

I A dynamical system consists of a set of variables that
describe its state and a law that describes the evolution of
the state variables with time (recall first two lectures).

I The Hodgkin-Huxley model is a four-dimensional
dynamical system because its state is uniquely determined
by the membrane potential, V , and gating variables n, m
and h for persistent K+ and transient Na+ currents. The
evolution law is given by a four-dimensional system of
ordinary differential equations.



Neurons are dynamical systems

All variables describing neuronal dynamics can be classified into
four classes, according to their functions and the time scale.

1. Membrane potential.

2. Excitation variables , such as activation of a Na+ current.
These variables are responsible for the upstroke of the
spike.

3. Recovery variables , such as inactivation of a Na+ current
and activation of a fast K+ current. These variables are
responsible for the repolarization (downstroke) of the spike.

4. Adaptation variables , such as activation of slow voltage- or
Ca2+-dependent currents. These variables build up during
prolonged spiking and can affect excitability in the long
run.

E. Izhikevich, Dynamical Systems in Neuroscience, MIT Press,
2007.



Phase protraits

Figure: Resting, excitable, and periodic spiking activity correspond to
a stable equilibrium (a and b) or limit cycle (c), respectively.
E. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007.



Figure: Four generic (codimension-1) bifurcations of an equilibrium state leading to the

transition from resting to periodic spiking behavior in neurons. E. Izhikevich, Dynamical

Systems in Neuroscience, MIT Press, 2007.



Classification of neurons

I Notice that there is a coexistence of resting and spiking
states in the case of saddle-node and subcritical
Andronov-Hopf bifurcations, but not in the other two
cases. Such a coexistence reveals itself via a hysteresis
behavior when the injected current slowly increases and
then decreases past the bifurcation value, because the
transitions “resting→spiking” and “spiking→resting” occur
at different values of the current.

I Systems near Andronov-Hopf bifurcations, whether
subcritical or supercritical, exhibit damped oscillations of
membrane potential, whereas systems near saddle-node
bifurcations do not. The existence of small amplitude
oscillations creates the possibility of resonance of the
frequency of the incoming pulses.

E. Izhikevich, Dynamical Systems in Neuroscience, MIT Press,
2007.



Classification of neurons

E. Izhikevich, Dynamical Systems in Neuroscience, MIT Press,
2007.



Neurocomputational properties

E. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007.



Summary

In neurons...

I electrochemical gradient is the major driving force of
neural activity.

I electrical charges are carried by Na+, K+, Ca2+ and Cl−.

I current of each ion species is proportional to the membrane
potential V : Ii = gi(V − Ei).

I gi is NOT constant and is a function of V and time, which
make neurons excitable.

Neurons...

I are dynamical systems.

I undergo only four (codimension-1) bifurcations between
resting and spiking states.

I are uniquely classified according to these bifurcations.



Useful resources

I E. Izhikevich, Dynamical Systems in Neuroscience: The
Geometry of Excitability and Bursting, The MIT Press,
2007 (Chapters 1&2).


