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Stochastic Modeling of chemical reactions

I Deterministic differential equations (ODEs)
I In many cases, the time-evolution of a chemically reacting

system can be treated as continuous-state, deterministic
process.

I ODEs characterize the time-evolution of chemical species as
continuous deterministic process.

I Qualitative method. Can be used when concentrations are
large.



I Deterministic differential equations (ODEs)
I Each equation expresses the time-rate-of-change of the

continuous molecular concentration of one chemical species
as a function of the molecular concentrations of all the
species.

I Rate constants are viewed as ”reaction rates”.
I Fast to simulate. Produce the same result for the same

initial conditions.
I X1 + X2

k1−→ X3,

v = d[X3]
dt = −d[X1]

dt = −d[X2]
dt = k1[X1][X2]

dX(t) = Sv
(
K,X(t)

)
dt

I X is the vector of variables ([X1], [X2], and [X3]).
I S is the stoichiometric matrix.
I v is the vector of reaction rates.
I K is the matrix of rate constants.



I Stochastic modeling
I A chemical reaction occurs whenever two or more molecules

of appropriate kinds collide in an appropriate way.
I Collisions in a system of molecules in thermal equilibrium

occur in a random way.
I Gillespie stochastic simulation algorithm (SSA)

characterizes the time-evolution of chemical species as
discrete-state stochastic process. SSA numerically simulates
the Markov process that the Chemical Master Equation
describes analytically.

I The time-evolution of chemical species takes the form of a
Markovian random walk in the M -dimensional space of
molecular populations.

I Exact method to solve chemical reaction systems.
I It is always valid when the deterministic approach is valid

and sometimes valid when the deterministic approach is
not valid.

I Needs to be used when small numbers of molecules.
I Time consuming to solve larger systems.
I There are several ways to speed up the SSA, but we discuss

only the methods based on stochastic differential equations.



I Stochastic modeling
I Stochastic differential equations (SDEs) characterize

the time-evolution of chemical species as continuous-state
stochastic process.

I Approximate method.
I Cannot be used when concentrations are small, good for

larger concentrations when stochasticity is still important.
I M chemical species → M differential equations.



Fluctuations in dynamical systems

Noise exists in all dissipative systems. Thus, variables
describing the state of the system with noise are random
entities. Evolution of the system is a stochastic process.
Intrinsic noise
The system usually consists of many micro-particles.
Macro-level variables of the system is always subject to heat
fluctuations. Finite number of variables in a mathematical
model and quantum nature of micro-particles are also sources of
noise.
Extrinsic noise
On the other hand, the dynamical system describes a real
process at some desired level. The system is usually separated
from the surrounding environment. In this case, extrinsic noise
influence the system (external stochastic force).



Two fundamental approaches

1. Stochastic differential equations

ẋξ = f(xξ, ξ(t)) ,

where ξ(t) is sequence of randomly generated numbers. Thus,
evolution operator becomes random in time: mapping
xξ → xξ(t+ dt) depends on concrete choice of ξ(t) and, hence,
xξ(t) is a stochastic process.
The same initial conditions give different resulting trajectory
xξ(t). ⇒ one should consider statistical ensemble which is
determined by the perturbing source ξj(t), j = 1, 2, . . . , N . For
N →∞ statistical ensemble determines the stochastic process.



Two fundamental approaches

2. Probability and probability density distributions
One can measure realizations of a stochastic process
x1, x2, . . . , xn in time moments t1, t2, . . . , tn and then take joint
probability p(x1, t1;x2, t2; . . . ;xn, tn) of their appearance.
Evolution of the system is based on deterministic equations
with probabilities and probability densities as variables.

∂

∂t
p = Lp

L is linear evolution operator. We, as most of others, will
consider L which “does not remember previous
states” (Markovian process).



Chemical Master Equation (CME)

Notation needed to formulate CME:

I The function X: R+ → ZM describes the M variables
(numbers of molecules of each chemical species).

I The system is in state X(t) = x at time t meaning that
there is x numbers of molecules of each chemical species at
time t.

I Reaction constants are viewed as ”reaction probabilities
per unit time” instead of ”reaction rates”:

I cµ characterizes reaction Rµ, µ ∈ {1, . . . , N}:

cµdt := the average probability that a randomly selected

combination of reaction Rµ reactants in V at time t

will react accordingly in the infinitesimal time interval

[t, t+ dt).



The value for cµ can be found using molecular collision rate and
Maxwell’s velocity. However, the relationship between
deterministic rate constant k and stochastic reaction constant c
is rather simple.
Other entities needed are

hµ(x) := the number of possible reactant combinations of a

reaction Rµ in V at time t with X(t) = x.

and

νµ := the state-change vector (stoichiometric vector) defining

the change in the state X(t) = x caused by a reaction Rµ.



The propensity function aµ is defined as

aµ(cµ,x)dt := the probability that a reaction Rµ in V

will occur in the infinitesimal time interval

[t, t+ dt) given that the system is in the

state X(t) = x at time t,

meaning that
aµ(cµ,x) := cµhµ(x).



The stochastic formulation proceeds by considering the
probability function P (X(t) = x |X(t0) = x0) marked here
briefly as P (x, t |x0, t0):

P (x, t |x0, t0) := the probability to be in the state X(t) = x

in V at time t given that the system is

in the state X(t0) = x0 at time t0.

(1)

In the infinitesimal time interval [t, t+ dt) either zero or
one reaction occurs. Thus, there exists N + 1 distinct,
mutually exclusive routes (N reactions) from the state
X(t) = x− νµ (µ ∈ {1, . . . , N}) or X(t) = x (in case of no
reaction) to the state X(t+ dt) = x.
The probability that any of these routes takes place can be
calculated by summing their distinct probabilities.



The probability P (x, t+ dt |x0, t0) can be written as follows

P (x, t+ dt |x0, t0) = P (x, t |x0, t0)P
(
no reaction in [t, t+ dt)

)
+

N∑
µ=1

P (x− νµ, t |x0, t0)P
(
one reaction Rµ in [t, t+ dt)

)
.

Since in the first term no reaction is occurring in the
infinitesimal time interval [t, t+ dt), it means that the
system has to be in state x already at time t. Thus, in
the first term, the probability that the system was in the state
X(t0) = x0 at t0 and is in the state X(t) = x at t is multiplied
by the probability that no reaction occurs in the infinitesimal
time interval [t, t+ dt).
The second term is the sum of N routes where one
reaction Rµ occurs in the infinitesimal time interval
[t, t+ dt). The probability that the system was in the state
X(t0) = x0 at t0 and is in the state X(t) = x− νµ at t is
multiplied by the probability that one reaction Rµ (which will
change state from x− νµ to x) occurs in the infinitesimal time
interval [t, t+ dt).



It can be seen that

P
(
no reaction in [t, t+ dt)

)
= 1−

N∑
µ=1

aµ(cµ,x)dt

and

P
(
one reaction Rµ in [t, t+ dt)

)
= aµ(cµ,x− νµ)dt.

Now we can write

P (x, t+ dt |x0, t0) = P (x, t |x0, t0)
(
1−

N∑
µ=1

aµ(cµ,x)dt
)

+

N∑
µ=1

P (x− νµ, t |x0, t0)aµ(cµ,x− νµ)dt.



The Chemical Master Equation is obtained

∂P (x, t |x0, t0)

∂t
≡ lim

dt→0

P (x, t+ dt |x0, t0)− P (x, t |x0, t0)

dt

=

N∑
µ=1

[aµ(cµ,x− νµ)P (x− νµ, t |x0, t0)

−aµ(cµ,x)P (x, t |x0, t0)] .

Chemical master equation describes the time evolution of the
probability of a chemical system to occupy each one of the
discrete set of states.
The chemical master equation is usually intractable, both
analytically and numerically. The Gillespie stochastic
simulation algorithm is a computer algorithm for numerical
simulation of the process that chemical master equation
describes.



Simple example
The CME for reaction

A
c−→ ∅

can be given with the help of (x is the number of molecules A)

x + 1→ x→ x− 1, aµ(x) = cx, νµ = −1.

The CME has the form

∂P (x, t | x0, t0)

∂t
=

1∑
µ=1

(
aµ(x− νµ)P (x− νµ, t | x0, t0)

− aµ(x)P (x, t | x0, t0)
)

= c(x+ 1)P (x + 1, t | x0, t0)− cxP (x, t | x0, t0).



Linear system is a special case:
Reaction A

c−→ ∅ has the CME

∂P (x, t | x0, t0)

∂t
= c(x+ 1)P (x + 1, t | x0, t0)− cxP (x, t | x0, t0).

Using mathematical induction, it is possible to show that

P (x, t | x0, t0) =
x0!

x!(x0 − x)!
e−cxt(1− e−ct)x0−x.

Mean is

E(X) =

x0∑
x=0

xP (x, t | x0, t0) =

x0∑
x=0

x
x0!

x!(x0 − x)!
e−cxt(1−e−ct)x0−x =

= x0e
−ct

x0∑
x=1

(x0 − 1)!

(x− 1)!(x0 − 1− (x− 1))!
(e−ct)x−1(1−e−ct)x0−1−(x−1) =

= x0e
−ct (This is solution of the deterministic ODE).



Gillespie Stochastic Simulation Algorithm (SSA)

Gillespie stochastic simulation algorithm is a way to simulate
the system at state X(t) to state X(t+ τ) in a stochastic
manner by randomly selecting

1. what is the next reaction time moment τ and

2. which reaction Rµ that happens at the time interval
(t+ τ, t+ τ + dτ).

This problem can be solved using reaction probability
density function.
In the SSA, the probability function P (x, t |x0, t0) defined in
Equation 1 is not used but instead a joint probability density
function p(τ, µ |x, t) of two random variables, τ and µ.



The joint probability density function is defined as

p(τ, µ |x, t)dτ := the probability that the next reaction in V

will occur in the differential time interval

[t+ τ, t+ τ + dτ) and will be a reaction Rµ

given that the system is in the state X(t) = x

at time t, when τ ∈ [0,∞) and µ ∈ {1, . . . , N}

p(τ, µ |x, t)dτ can be defined as the probability of no
reaction occurring in the time interval [t, t+ τ), denoted
by P0(τ |x, t), multiplied by the probability that Rµ will
occur in the infinitesimal time interval [t+ τ, t+ τ + dτ),
denoted by aµdτ :

p(τ, µ |x, t)dτ = P0(τ |x, t)aµ(cµ,x)dτ.



Next, the formula for P0(τ |x, t) is solved. The probability
that no reaction occurs in [t, t+ τ + dτ) is

P0(τ + dτ |x, t) = P0(τ |x, t)
(
1−

N∑
µ=1

aµ(cµ,x)dτ
)
,

where the first term is the probability that no reaction occurs in
[t, t+ τ) and the second term is the probability that no reaction
occurs in [t+ τ, t+ τ + dτ). It is obtained that

dP0(τ |x, t)
dτ

= lim
dτ→0

P0(τ + dτ |x, t)− P0(τ |x, t)
dτ

= −a0(cµ,x)P0(τ |x, t),

where a0(cµ,x) =

N∑
µ=1

aµ(cµ,x). The solution with the initial

condition P0(τ = 0 |x, t) = 1 is

P0(τ |x, t) = e−a0(cµ,x)τ .



p(τ, µ |x, t)dτ = P0(τ |x, t)aµ(cµ,x)dτ.

Finally it is concluded that the joint probability function has
the form

p(τ, µ |x, t) =


aµ(cµ,x)e−a0(cµ,x)τ if τ ∈ [0,∞) and

µ ∈ {1, . . . , N},
0 otherwise,

where a0(cµ,x) =

N∑
µ=1

aµ(cµ,x).



The joint probability density function can be given in form
pτ,µ(τ, µ) = pτ (τ)pµ | τ (µ | τ), where pτ (τ)dτ is the probability
that the next reaction will occur in [t+ τ, t+ τ + dτ) regardless
of which reaction it might be and pµ | τ (µ | τ) is the probability
that the next reaction will be Rµ given that it occurs at time
t+ τ :

pτ (τ) =


N∑
µ=1

pτ,µ(τ, µ) if τ ∈ [0,∞),

0 otherwise,

=


N∑
µ=1

aµe
−a0τ if τ ∈ [0,∞),

0 otherwise,

=

{
a0e
−a0τ if τ ∈ [0,∞),

0 otherwise,

(2)



and

pµ | τ (µ | τ) =


pτ,µ(τ, µ)

N∑
µ′=1

pτ,µ(τ, µ′)

if µ ∈ {1, . . . , N},

0 otherwise,

=


aµe
−a0τ

N∑
µ′=1

aµ′e
−a0τ

if µ ∈ {1, . . . , N},

0 otherwise,

=


aµ
a0

if µ ∈ {1, . . . , N},

0 otherwise.

(3)

Each probability density function depends only on one of the
two parameters, pµ | τ (µ | τ) = pµ | τ (µ).



There are several ways to implement the exact SSA. In the
direct method, with two random numbers r1 and r2 uniformly
distributed on the interval [0, 1], the time interval [t, t+ τ) is
determined according to Equation 2 and the reaction Rµ is
determined according to Equation 3.
The probability distribution function Fτ is

Fτ (τ |x, t) =

∫ τ

−∞
pτ (τ ′ |x, t)dτ ′ =

∫ τ

0
pτ (τ ′ |x, t)dτ ′

=

∫ τ

0
a0e
−a0τ ′dτ ′ = 1− e−a0(cµ,x)τ .

Because Fτ (τ) ∈ [0, 1], it is possible to mark
r1 = Fτ (τ) = 1− e−a0τ . By replacing the random number 1− r1
by the statistically equivalent random number r1, r1 = e−a0τ is
obtained. Now ln(r1) = −a0τ , τ = −ln(r1)/a0, and finally

τ =
1

a0(cµ,x)
ln
( 1

r1

)
.



Using Equation 3, the probability distribution function Fµ | τ is

Fµ | τ (µ |x, t) =

µ∑
µ′=−∞

pµ | τ (µ′ |x, t) =

µ∑
µ′=1

pµ | τ (µ′ |x, t)

=
1

a0(cµ,x)

µ∑
µ′=1

aµ′(cµ,x).

Taking for µ the value which satisfies
Fµ | τ (µ− 1) < r2 ≤ Fµ | τ (µ),

µ−1∑
µ′=1

pµ | τ (µ′ |x, t) < r2 ≤
µ∑

µ′=1

pµ | τ (µ′ |x, t)

is obtained, and

µ−1∑
µ′=1

aµ′(cµ,x) < r2a0(cµ,x) ≤
µ∑

µ′=1

aµ′(cµ,x).



Gillespie Algorithm (direct method)

1. Set t = 0. Specify initial values for X = [X1, ..., XM ] and
values for cµ and stoichiometric vectors νµ, µ = 1, ..., N .

2. Calculate aµ, µ = 1, ..., N , and a0 =
∑N

µ=1 aµ .

3. Generate random pair (τ, µ) according to p(τ, µ |x, t):
Generate two random numbers r1 and r2 uniformly
distributed on the interval [0, 1].
Take τ = 1

a0
ln 1

r1
.

Take µ so that
∑µ−1
µ′=1 aµ′ < r2a0 ≤

∑µ
µ′=1 aµ′ .

4. Update of the system by

X(t+ τ) = X(t) + νµ. (4)

5. Go to step 2 or end the simulation.

D. T. Gillespie, Journal of Computational Physics, vol. 22, no.
4, pp. 403-434, 1976.



By carrying out the above procedure one obtains one possible
realization of the stochastic process.
In order to get statistically complete picture of the
time-evolution of the system, one must carry out several
independent simulations with the same initial conditions and
calculate sample mean and sample standard deviation.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

P
K

C
a

t (s)
0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

P
K

C
a

t (s)

Figure: Left: one realization. Right: sample mean and standard
deviation of 1000 realizations (T. Manninen et al., Computational
Biology and Chemistry, vol. 30, pp. 280–291, 2006.



Difference between ODE and SSA model construction:

I ODE: concentrations [X] in M = mol/l, [vµ] = M/s

I SSA: [X] in numbers, [aµ] = [cµ] = 1/s

I X = NAV [X], where NA is the Avogadro’s constant and V
is volume.

I ∅ kµ−→ S:
I Reaction rate: vµ = kµ, [kµ] = M/s
I Propensity: hµ = 1, aµ = cµ, cµ = NAV kµ

I S1
kµ−→ S2:

I vµ = kµ[X1], [kµ] = 1/s
I hµ = X1, aµ = cµX1, cµ = kµ



I S1 + S2
kµ−→ S3:

I vµ = kµ[X1][X2], [kµ] = 1/(Ms)
I hµ = X1X2, aµ = cµX1X2, cµ = kµ/(NAV )

I 2S1
kµ−→ S2:

I vµ = kµ[X1]2, d[X1]/dt = −2kµ[X1]2, [kµ] = 1/(Ms)
I hµ = X1(X1− 1)/2, aµ = cµX1(X1− 1)/2, cµ = 2kµ/(NAV )
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Figure: Five realizations of stochastic linear birth-death process
together with the deterministic solution for two different (λ, µ)
combinations, i.e., left: λ = 3, µ = 4 and right: λ = 7, µ = 8, each
λ− µ = −1 and x0 = 50.



Stochastic Differential Equation (SDE) Models

If during any time interval [t, t+ τ) all of the reactions can
occur often, but none of the propensity functions aµ changes
significantly, then the discrete-state Markov process can be
approximated by a continuous-state Markov process described
by the chemical Langevin equation (CLE).
The number of times a reaction can happen can be defined as

Kµ(cµ,x, τ) := the number of times a reaction Rµ occurs

in the time interval [t, t+ τ ] given that the

system is in the state X(t) = x at time t.

The update of the system in Equation 4 then becomes

X(t+ τ) = X(t) +

N∑
µ=1

Kµ(cµ,x, τ)νµ.



Kµ(cµ,x, τ) is of course a random variable. To compute it for
arbitrary τ > 0 would be quite as difficult as solving the master
equation. But we can obtain excellent approximation to
Kµ(cµ,x, τ) rather easily if we impose the following conditions:

1) Require τ to be small enough that the change in the state
during [t, t+ τ ] will be so slight that none of the propensity
functions changes its value “appreciably”, i.e.

aµ(x(t′)) ∼= aµ(x(t)) , ∀t′ ∈ [t, t+ τ ] , ∀µ ∈ [1, N ]

Practically: all reactant molecule populations are sufficiently
large compared to 1.
So we can rewrite the “update” of the system:

X(t+ τ) = X(t) +

N∑
µ=1

νµPµ(aµ(cµ,x), τ) ,

where Pµ(aµ(cµ,x), τ) is Poisson random variable.



2) Require τ to be large enough that the expected number of
occurrences of each reaction channel Rµ in [t, t+ τ ] be much
larger than 1, i.e.

〈Pµ(aµ(cµ,x), τ)〉 = aµ(cµ,x)× τ � 1 , ∀µ ∈ [1, N ] .

Obviously, this condition runs counter to condition 1.
Practically: aµ(cµ,x) is proportional to hµ(x) and thus to one
or more components of x, thus, sufficiently large molecular
populations can make the condition 2 to hold even when τ is
small.
This condition allows us to approximate each Poisson random
variable Pµ(aµ(cµ,x), τ) by a normal random variable with the
same mean and variance.
So the update of the system:

X(t+ τ) = X(t) +

N∑
µ=1

νµNµ(aµ(cµ,x)τ, aµ(cµ,x)τ) ,

where N (m,σ2) denotes the normal random variable with mean
m and variance σ2.



Further modifying the update (using the linear combination
theorem for normal random variables:
N (n, σ2) = m+ σN (0, 1)):

X(t+ τ) = X(t) +

N∑
µ=1

νµNµ
(
aµ(cµ,x)τ, aµ(cµ,x)τ

)
=

= X(t)+

N∑
µ=1

νµaµ
(
cµ,X(t)

)
τ+

N∑
µ=1

νµ

√
aµ
(
cµ,X(t)

)
τNµ(0, 1) =

= X(t) +

N∑
µ=1

νµaµ
(
cµ,X(t)

)
τ +

N∑
µ=1

νµ

√
aµ
(
cµ,X(t)

)
Nµ(0, τ).



Some implications

I Condition 1 requires that any of the propensity functions
does not change appreciably. Thus, all reactions occurring
in [t, t+ τ ] will be essentially independent of each other.
Hence, we can approximate each Kµ(cµ,x, τ) with
statistically independent Poisson random variable.

I Notice that in replacing the integer Poisson random
variables by the real normal random variables (by condition
2), we in effect convert Xj from discretely changing integer
variables to continuously changing real variables.

I Notice that the normal random variables Nµ will be
statistically independent as a consequence of statistical
independence of the Poisson’s Pµ. That is why one can use
Brownian motion as an approximation to Nµ.



The chemical Langevin equation

dX(t) =

N∑
µ=1

νµaµ
(
cµ,X(t)

)
dt+

N∑
µ=1

νµ

√
aµ
(
cµ,X(t)

)
dWµ(t) ,

where dW(τ) ∼ N (0, τ) ≡
√
τN (0, 1) is the Brownian motion.

W(0) = 0, the increment W(t)−W(s) ∼ N (0, t− s) for all
0 ≤ s < t ≤ T , and for all 0 ≤ s < t < u < v ≤ T , the increments
W(t)−W(s) and W(v)−W(u) are independent.

D. T. Gillespie, J. Chem. Phys., vol. 113, no. 1, pp. 297–306,
2000.



General Stochastic differential equation model

dx(t) = f(x(t))dt+ g(x(t))dW (t)

can be simulated using, for example, the Euler-Maruyama
method

x(t+ ∆t) = x(t) + f(x(t))∆t+ g(x(t))
√

∆tN (0, 1)

where ∆t is a small numerical integration (simulation) time
step.

Higher order Milstein method can also be applied:

x(t+ ∆t) = x(t) + f(x(t))∆t+ g(x(t))
√

∆tN (0, 1)+

+
1

2
g(x(t))g′(x(t))

(
N 2(0, 1)− 1

)
∆t.



Summary

I Mean field approximation (ODE approach) does not work
for small number of molecules.

I All molecular systems get affected by the thermal
fluctuations (intrinsic noise).

I There are two fundamental approaches to stochastic
systems: Chemical Master Equation (CME) and stochastic
differential equations.

I CME is usually intractable, because each state of the
system needs a separate ODE.

I Gillespie stochastic simulation algorithm (SSA) numerically
simulates the Markov process that the CME describes
analytically.


