
Excitability phenomena:

Morris-Lecar model∗

Consider the following system of equations 1:
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Task #1
Implement the above model in your favourite environment using the follow-

ing parameter set: gL = 2, VL = −60, gCa = 4, VCa = 120, gK = 8, VK = −84,
C = 20, I = 0, V1 = −1.2, V2 = 18, V3 = 2, V4 = 30, φ = 0.04. Time is mea-
sured in milliseconds in the model, so make the total time for the simulation
equal 100 ms.

Simulate the system for the initial conditions w(0) = 0.014873 and V (0) =
−60.899. Now change the conditions to V (0) = −20 leaving w(0) as is. Finally,
try V (0) = −10. What have you observed for these three initial conditions?
Does the dynamics change qualitatively? Plot the kinetics of the Ca2+ and K+

currents which are ICa = gCam∞(V )(V − VCa) and IK = gKw(V − VK).
Given the above three simulation experiments can you explain what the

phenomenon of excitability means? Plot the phase portraits for the above sim-
ulations and note the difference between the three cases (Hint: use total time
of simulation equal 250 ms when plotting phase portraits).

The Morris-Lecar model is particularly useful since allows for the dynami-
cal investigation on the 2D phase portrait. As you remember Hodgkin-Huxley
model is 4D.

Task #2
Recall the notion of (major) nullclines. There are two major nullclines, which

are curves where dV/dt = 0 and dw/dt = 0. Draw the major nullclines for the
Morris-Lecar model.

∗This project work is inspired by the Bard Ermentrout’s XPPAUT tutorial: http://www.
math.pitt.edu/~bard/bardware/tut/xpptut3.html

1http://www.scholarpedia.org/article/Morris-Lecar_model
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Recall also that the intersection points of the major nullclines are the fixed
point attractors of the system. Try to find the steady states both using data
browser of the curves you drew and by any numerical procedure (Hint: use
fsolve in Matlab).

Recall the matrix A of the variable coefficients of the linearized system (it
is frequently called Jacobian), which we used to analyze the stability of steady
states. Try to find numerically the Jacobian matrix and evaluate it at the steady
state(s) (Hint: in Matlab one can use gradient function along with subs to
instantiate the symbolic expressions with real values).

Finally, using the Jacobian matrix try to find, also numerically, its eigenval-
ues (λ1,2) for the given steady state(s). What can you say about steady state’s
stability? What is the type of the steady state(s)?

Task #3
Set I = 120 and simulate for 250 ms or larger. What do you see? Try to

determine the steady state stability using procedures from the previous task
given these new conditions. What is the stability of the steady state?

Compare the eigenvalues for I = 0 (previous task) and for I = 120. What
can you say about the dynamical transition? Does any bifurcation take place
when the current I changes? What is the bifurcation, if any?

Set I = 80 and simulate again. What has changed in the steady state as
compared to the I = 0 case? Try to identify value of the current I at which the
steady state goes from stable to unstable.

Task #3a (Advanced)
If you are familiar with the bifurcation analysis tools (e.g. AUTO, MAT-

CONT, CONTENT etc.), try to perform the continuation of the steady state
at I = 0 up to I = 250 (or so). Look for bifurcations occurring while the con-
tinuation procedure goes. Expand all bifurcations to see what novel dynamical
behaviors they give rise to.

If you are not familiar with any bifurcation analysis toolbox, just jump to
the next task.

Task #4
Let us change the parameter a bit as compared to the default set: V3 = 12,

V4 = 17.4, and φ = 0.066666667.
Look at the nullclines for I = 0, I = 30, I = 50. Determine the stability

of all fixed points you see (Hint: use different initial guesses for the fsolve in
Matlab to study each steady state separately). For I = 30 what is the type of
the middle intersection point of the nullclines? What function does this steady
state serve in the system with the given parameter set? What are the stable
attractors of the system and with what fixed points they are “associated” with?

Set φ = 0.25 and repeat the exercise from the beginning. What are the
stable attractors now? Does the system possess any periodic behavior?
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